期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
采用最大-最小蚁群算法的励磁系统参数辨识 被引量:6
1
作者 毛晓明 蔡永智 赵勇 《电力系统及其自动化学报》 CSCD 北大核心 2015年第5期51-55,共5页
为获得发电机励磁系统准确的模型参数,对BPA(bonneville power administration)软件中励磁系统典型仿真模型进行深入分析,得到模型参数与励磁系统大、小阶跃响应特性的关联关系。结合实际情况,对需辨识参数进行筛选,对参数取值范围进行... 为获得发电机励磁系统准确的模型参数,对BPA(bonneville power administration)软件中励磁系统典型仿真模型进行深入分析,得到模型参数与励磁系统大、小阶跃响应特性的关联关系。结合实际情况,对需辨识参数进行筛选,对参数取值范围进行限制。采用最大-最小蚁群算法对参数进行辨识,先求得影响发电机空载电压小干扰阶跃响应特性的主要参数,再得到影响发电机空载电压大干扰阶跃响应特性的主要参数。BPA计算得到的辨识模型仿真曲线与实测数据吻合良好,仿真结果表明了辨识方法的有效性。 展开更多
关键词 励磁系统 参数辨识 最大-最小算法 电压阶跃响应
在线阅读 下载PDF
近红外光谱技术结合反向区间偏最小二乘算法-连续投影算法预测哈密瓜可溶性固形物含量 被引量:9
2
作者 郭阳 史勇 +2 位作者 郭俊先 李雪莲 黄华 《食品与发酵工业》 CAS CSCD 北大核心 2022年第2期248-253,共6页
采用近红外光谱技术结合数据降维的方法,建立了哈密瓜可溶性固形物含量的预测模型,对原始光谱进行特征区间选择,共选取了6个子区间,432个光谱变量;将6个联合子区间的光谱数据分别结合特征选择竞争性自适应重加权采样算法、遗传算法、连... 采用近红外光谱技术结合数据降维的方法,建立了哈密瓜可溶性固形物含量的预测模型,对原始光谱进行特征区间选择,共选取了6个子区间,432个光谱变量;将6个联合子区间的光谱数据分别结合特征选择竞争性自适应重加权采样算法、遗传算法、连续投影算法(successive projections algorithm, SPA)提取特征波长;再使用选取的特征波长以及特征区间波长作为模型的输入变量,利用极限学习机和偏最小二乘算法(partial least squares, PLS)建立哈密瓜可溶性固形物含量预测模型。结果显示,反向区间偏最小二乘算法+SPA+PLS建立的预测模型最优,模型的校正集相关系数为0.923 4,预测集相关系数为0.878 8,模型能够准确预测哈密瓜可溶性固形物含量。 展开更多
关键词 哈密瓜 反向区间最小乘算法-连续投影算法 最小乘算法 可溶性固形物 无损检测
在线阅读 下载PDF
动态凸包引导的偏优规划蚁群算法求解TSP问题 被引量:12
3
作者 马学森 宫帅 +1 位作者 朱建 唐昊 《通信学报》 EI CSCD 北大核心 2018年第10期59-71,共13页
针对蚁群算法搜索空间大、收敛速度慢、容易陷入局部最优等缺陷,提出一种基于动态凸包引导的偏优规划蚁群算法。改进后的算法动态控制蚂蚁的待选城市范围,有助于在跳出局部最优并向全局最优逼近的基础上减少蚂蚁搜索空间;同时,引入延陷... 针对蚁群算法搜索空间大、收敛速度慢、容易陷入局部最优等缺陷,提出一种基于动态凸包引导的偏优规划蚁群算法。改进后的算法动态控制蚂蚁的待选城市范围,有助于在跳出局部最优并向全局最优逼近的基础上减少蚂蚁搜索空间;同时,引入延陷漂流因子和基于待选城市构建的凸包来干预当前蚂蚁的城市选择,增加算法前期解的多样性并提高蚂蚁的偏优规划能力;再利用局部与整体相结合的完整路径信息、凸包的构建信息来协调信息素的更新,引导后继蚂蚁路径偏优规划,提高算法的求解精度;设计具有收敛性的信息素最大最小值限制策略,既加快算法的求解速度又避免算法过早停滞;最后在4种经典TSP模型上应用改进后的算法。仿真结果表明,所提算法在求解精度和收敛速度等方面均有显著提高,且具有较好的适用性。 展开更多
关键词 算法 维凸包 TSP 优规划
在线阅读 下载PDF
基于蚁群粒子群混合算法与LS-SVM瓦斯涌出量预测 被引量:13
4
作者 付华 于翔 卢万杰 《传感技术学报》 CAS CSCD 北大核心 2016年第3期373-377,共5页
为有效预防瓦斯灾害,以预测矿井瓦斯涌出量为研究目的,提出经改进的蚁群(ACO)粒子群(PSO)混合算法优化的最小二乘支持向量机(LS-SVM),并用其预测非线性动态瓦斯涌出量。算法通过对LS-SVM的正则化参数C和高斯核参数σ进行寻优,建立了基... 为有效预防瓦斯灾害,以预测矿井瓦斯涌出量为研究目的,提出经改进的蚁群(ACO)粒子群(PSO)混合算法优化的最小二乘支持向量机(LS-SVM),并用其预测非线性动态瓦斯涌出量。算法通过对LS-SVM的正则化参数C和高斯核参数σ进行寻优,建立了基于蚁群粒子群混合算法优化的瓦斯涌出量预测模型,并根据赵各庄矿矿井监测到的各项历史数据进行实例分析。实验结果表明:该预测模型预测的最大相对误差为1.05%,最小相对误差为0.28%,平均相对误差为0.75%。较其他预测模型拥有更强的泛化能力和更高的预测精度。 展开更多
关键词 瓦斯涌出量 非线性动态预测 算法 粒子算法 最小二乘支持向量机
在线阅读 下载PDF
基于蚁群优化的最小二乘支持向量机风速预测模型研究 被引量:26
5
作者 曾杰 张华 《太阳能学报》 EI CAS CSCD 北大核心 2011年第3期296-300,共5页
基于最小二乘支持向量机理论,建立风速预测模型。同时,由于最小二乘支持向量机参数选取尚无有效方法,该文尝试采用蚁群算法理论来进行参数优化选择。选取某风场前四天的实测风速(采样间隔30min),应用所建立的风速预测模型,来预测第五天... 基于最小二乘支持向量机理论,建立风速预测模型。同时,由于最小二乘支持向量机参数选取尚无有效方法,该文尝试采用蚁群算法理论来进行参数优化选择。选取某风场前四天的实测风速(采样间隔30min),应用所建立的风速预测模型,来预测第五天的48个风速值,其预测的平均绝对百分比误差仅为9.53%,预测效果较理想,验证了应用蚁群优化算法理论与最小二乘支持向量机理论进行风速预测的可行性,可为风电场规划选址和风力发电功率预测等提供理论支持。 展开更多
关键词 风速预测 最小二乘支持向量机 优化算法 风电场 风力发电
在线阅读 下载PDF
基于二次分配问题的混合蚁群算法 被引量:6
6
作者 张翠军 邹慧 张有华 《计算机工程与应用》 CSCD 北大核心 2008年第10期37-39,共3页
二次分配问题是组合优化领域中经典的NP-hard问题之一,应用广泛。在对二次分配问题进行分析的基础上,提出了一种求解该问题的混合蚁群算法。该算法通过在蚁群算法中引入遗传算法的2-交换变异算子,增强了算法的局部搜索能力,提高了解的... 二次分配问题是组合优化领域中经典的NP-hard问题之一,应用广泛。在对二次分配问题进行分析的基础上,提出了一种求解该问题的混合蚁群算法。该算法通过在蚁群算法中引入遗传算法的2-交换变异算子,增强了算法的局部搜索能力,提高了解的质量。实验结果表明,该算法在求解二次分配问题时优于蚁群算法和遗传算法。 展开更多
关键词 次分配问题 NP-HARD问题 混合算法 2-交换变异算子 局部搜索
在线阅读 下载PDF
基于蚁群-遗传算法的光谱选择方法与应用 被引量:7
7
作者 黄清 薛河儒 +3 位作者 刘江平 刘美辰 胡鹏伟 孙德刚 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第7期2262-2268,共7页
脂肪作为牛奶中的重要营养成分,是评价牛奶质量的一项重要指标。高光谱图像技术能够提供几十到数千波长的数据,能够反映牛奶中不同组成成分细微的光谱差异;另一方面,相邻波段之间往往具有很强的相关性,不仅增加了计算量,而且容易造成维... 脂肪作为牛奶中的重要营养成分,是评价牛奶质量的一项重要指标。高光谱图像技术能够提供几十到数千波长的数据,能够反映牛奶中不同组成成分细微的光谱差异;另一方面,相邻波段之间往往具有很强的相关性,不仅增加了计算量,而且容易造成维数灾难等问题,因此对高光谱数据进行波段选择非常重要。工作中提出了PLS-ACO特征波段选择方法,并与遗传算法结合,组合成了PLS-ACO-GA的特征波段选择新方法。提出的两种方法以蚁群算法为基础,PLS回归模型回归系数的绝对值作为评价波长重要性的主要依据,以此作为蚁群算法的启发式信息,利用蚁群算法进行智能搜索,结合遗传算法,产生更多优秀的特征波段组合,避免PLS-ACO算法得到的只是局部最优解,得到的最优波段组合能够更好的反映牛奶中脂肪成分的信息;通过计算波长贡献率,筛选出最优波段组合,并与遗传算法,CARS算法和基本蚁群算法光谱特征选择方法比较,最后比较不同特征选择方法下的PLS回归模型预测效果。PLS-ACO,PLS-ACO-GA,CARS,GA和ACO分别筛选了牛奶样品光谱中的18,16,40,43和42个特征波段。其中PLS-ACO-GA筛选波段后的PLS预测模型效果最好,预测集R_(p)^(2)和RMSEP分别为0.9976和0.0622,PLS-ACO次之,预测集R_(p)^(2)和RMSEP分别为0.9970和0.0778。PLS-ACO和PLS-ACO-GA不仅减少了特征波段数量,而且提高了模型的精度。对PLS-ACO-GA进行特征波段选择后的数据,建立MLR,RFR和PLS回归预测模型。MLR预测模型的R_(p)^(2)和RMSEP分别为0.9976和0.0623。RFR回归模型R_(p)^(2)和RMSEP分别为0.9999和0.0030,PLS回归模型的R_(p)^(2)和RMSEP分别为0.9976和0.0622。RFR模型在三种回归预测模型中表现最好。研究结果表明PLS-ACO和PLS-ACO-GA这两种方法可以实现光谱数据特征波段选择,高光谱技术可以实现牛奶中脂肪含量的检测,为牛奶脂肪含量检测提供了一种新的、快速无损的方法。 展开更多
关键词 高光谱 牛奶脂肪 遗传算法 算法 特征波段 最小二乘
在线阅读 下载PDF
求解VRPTW问题的多目标模糊偏好蚁群算法 被引量:4
8
作者 李世威 王建强 曾俊伟 《计算机应用研究》 CSCD 北大核心 2011年第12期4495-4499,共5页
通过分析多目标的、有时间窗的车辆路径问题,对各个目标进行多属性模糊评判,结合相关专家的综合意见以及决策者自身对专家意见的偏好,将决策者对目标属性的离散意见转换为对各目标的综合意见;通过定义一种模糊综合排序指标来确定决策者... 通过分析多目标的、有时间窗的车辆路径问题,对各个目标进行多属性模糊评判,结合相关专家的综合意见以及决策者自身对专家意见的偏好,将决策者对目标属性的离散意见转换为对各目标的综合意见;通过定义一种模糊综合排序指标来确定决策者对各目标的偏好权重,依据目标权重和各目标函数的规范化处理值,构建评价有时间窗的车辆路径问题的多目标模糊综合适应度函数;采用最大—最小蚂蚁系统算法对该问题进行求解;最后通过一个算例来说明该算法的有效性。 展开更多
关键词 车辆路径问题 时间窗 多目标 模糊效用 模糊评价 算法 最大-最小系统
在线阅读 下载PDF
紫外-可见吸收光谱结合化学计量学算法的水体总有机碳浓度快速检测 被引量:6
9
作者 李煜 毕卫红 +4 位作者 孙建成 贾亚杰 付广伟 王思远 王兵 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期722-730,共9页
总有机碳(TOC)指悬浮或溶解于水中有机物的含碳总量,是以单位体积水体中含碳的质量来表示水中有机物的浓度,通过总有机碳可以更全面反映水中有机污染物的总量。总有机碳的监测能够推动我国实现“碳达峰”和“碳中和”的目标,也对我国海... 总有机碳(TOC)指悬浮或溶解于水中有机物的含碳总量,是以单位体积水体中含碳的质量来表示水中有机物的浓度,通过总有机碳可以更全面反映水中有机污染物的总量。总有机碳的监测能够推动我国实现“碳达峰”和“碳中和”的目标,也对我国海洋地球碳循环的研究具有重要的意义。目前,国标法测量水质TOC主要采用高温催化氧化法和湿法氧化法,这两种方法虽测量准确、可解释性强,但都具有测试方法复杂、测量时间长、易产生二次污染、人力物力消耗巨大等缺点,且仅能在实验室内完成,无法进行TOC的原位在线测量。因此发展水质TOC快速、实时、在线监测技术具有重要意义。为此,建立了TOC标准溶液浓度基于紫外吸收光谱的单波长检测模型,针对物质种类更为复杂的真实水样分别使用ACO-PLS和SPA算法筛选特征波长,对比S-G平滑处理、最小最大归一化、标准正态变换(SNV)、消除常数偏移量、导数校正等多种光谱预处理方法的效果,经过粒子群算法优化的最小二乘支持向量机算法(PSO-LSSVM)建立快速检测模型。结果表明,选取不同数量特征波长,经SNV算法预处理后的建模效果普遍优于其他预处理方法;选用不同预处理算法,最佳特征波长数量普遍为50个,过多或过少的波长数量会使建模精度降低;最佳建模参数为选用SNV预处理方法,经ACO-PLS算法筛选50个特征波长组合并利用PSO-LSSVM算法建模,最优模型结果训练集Rc达到0.984 3, RMSEC为0.457 4,验证集Rp为0.974 5, RMSEP为0.481 1。将最优光谱检测模型应用于新采集水样,预测结果较为准确,具有一定鲁棒性。表明ACO-PLS算法可以有效选取特征波长,结合PSO-LSSVM算法可以实现利用紫外-可见吸收光谱对水体中TOC的测量,为水体TOC含量快速检测提供一种快速、无污染的测量方案,给相应传感器的研发提供了科学支持。 展开更多
关键词 总有机碳 紫外-可见吸收光谱 蚁群-偏最小二乘算法 粒子-最小二乘支持向量机
在线阅读 下载PDF
近红外光谱结合蚁群算法检测花茶花青素含量 被引量:9
10
作者 黄晓玮 邹小波 +2 位作者 赵杰文 石吉勇 张小磊 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期165-170,188,共7页
花青素是花茶中的主要质量指标,为了快速准确的检测花茶中花青素的含量,提出一种基于蚁群算法(ACO)结合区间偏最小二乘法(iPLS)的近红外光谱检测方法.原始近红外光谱经过预处理采用ACO-iPLS优选花青素含量对应的特征子区间.当全光谱划分... 花青素是花茶中的主要质量指标,为了快速准确的检测花茶中花青素的含量,提出一种基于蚁群算法(ACO)结合区间偏最小二乘法(iPLS)的近红外光谱检测方法.原始近红外光谱经过预处理采用ACO-iPLS优选花青素含量对应的特征子区间.当全光谱划分为12个子区间时,ACO-iPLS优选出第1,9,10共3个子区间,在此基础上建立的近红外光谱模型最佳.模型对校正集和预测集相关系数分别为0.901 3和0.864 2;交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.160 0 mg·g-1和0.202 0 mg·g-1.研究结果表明:与常规的iPLS相比,ACO-iPLS不但可以有效选择近红外光谱特征谱区,而且建立的模型具有更高的精度和鲁棒性. 展开更多
关键词 花茶 花青素 近红外光谱法 算法 区间最小二乘
在线阅读 下载PDF
基于改进蚁群算法优化参数的LSSVM短期负荷预测 被引量:39
11
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期3408-3414,共7页
提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找... 提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到模型的最优参数,得到基于MACO算法优化的LSSVM(MACO-LSSVM)预测模型。将优化后的LSSVM模型应用于短期电力负荷预测问题,选择湖南某地区日期为2009-08-01至2009-08-30各小时点的数据进行分析,对2009-08-31该日24 h的负荷进行预测,并与BP神经网络和SVM模型进行比较。研究结果表明:本文方法得到的均方根相对误差为1.71%,比用BP神经网络和SVM模型得到的均方根相对误差分别低1.61%和1.05%。 展开更多
关键词 最小二乘支持向量机 优化算法 参数优化 短期负荷预测
在线阅读 下载PDF
基于蚁群算法和LSSVM的锅炉燃烧优化预测控制 被引量:21
12
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《电力自动化设备》 EI CSCD 北大核心 2011年第11期89-93,共5页
火电厂锅炉燃烧过程是一个复杂的多输入/多输出系统,具有高度非线性、强耦合的特点。借助燃烧特性试验数据,利用最小二乘支持向量机(LSSVM)建立锅炉燃烧模型,使用非线性模型预测控制(MPC)算法对锅炉燃烧过程进行优化和控制。提出一种改... 火电厂锅炉燃烧过程是一个复杂的多输入/多输出系统,具有高度非线性、强耦合的特点。借助燃烧特性试验数据,利用最小二乘支持向量机(LSSVM)建立锅炉燃烧模型,使用非线性模型预测控制(MPC)算法对锅炉燃烧过程进行优化和控制。提出一种改进蚁群算法用于求解预测控制算法中的非线性优化问题,采用动态随机抽取方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索。实例表明,该方法对锅炉燃烧过程具有较好的控制效果。 展开更多
关键词 最小二乘支持向量机 算法 燃烧 优化 预测控制 电厂 支持向量机
在线阅读 下载PDF
基于偏最小二乘投影的可见/近红外光谱猪肉综合品质分类 被引量:21
13
作者 刘媛媛 彭彦昆 +1 位作者 王文秀 张雷蕾 《农业工程学报》 EI CAS CSCD 北大核心 2014年第23期306-313,共8页
针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于... 针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于偏最小二乘投影分析算法对全波段光谱数据进行数据降维,选取了13个特征波长。利用粒子群优化算法优化支持向量机惩罚参数和径向基核函数参数,优化后二者最优为4.939和0.01。利用选取的特征波长和优化后的参数建立了生鲜猪肉综合品质支持向量分类器。研究结果表明,分类器对训练集中白肌肉(pale,soft and exudative,PSE)、正常肉(reddish-pink,firm and non-exudative,RFN)和黑干肉(dark,firm and dry,DFD)的回判识别率分别为为88.46%、94.11%和92.31%;测试集中PSE、RFN和DFD预测正确率分别为84.62%、94.11%和84.62%。该分类器满足模型简单、预测准确率高等优点,为生鲜猪肉综合品质在线分级提供参考。 展开更多
关键词 无损检测 光谱学 综合品质 最小二乘投影分析算法 粒子优化算法 支持向量机
在线阅读 下载PDF
基于偏最小二乘回归和SVM的水质预测 被引量:21
14
作者 张森 石为人 +1 位作者 石欣 郭宝丽 《计算机工程与应用》 CSCD 北大核心 2015年第15期249-254,共6页
针对传统水质预测方法中水质因子的多重相关性造成预测精度低的问题,提出了一种将偏最小二乘法和支持向量机相耦合的水质预测方法。利用偏最小二乘法提取对水质因子影响强的成分,从而克服了信息冗余问题,并降低了支持向量的维数。利用... 针对传统水质预测方法中水质因子的多重相关性造成预测精度低的问题,提出了一种将偏最小二乘法和支持向量机相耦合的水质预测方法。利用偏最小二乘法提取对水质因子影响强的成分,从而克服了信息冗余问题,并降低了支持向量的维数。利用支持向量机建模可以较好地解决高维非线性小样本问题。同时利用改进的PSO算法优化SVM参数,减小参数搜索的盲目性。研究结果表明,本耦合模型的预测精度和运行效率明显优于常用的BP人工神经网络和传统的支持向量机,可以更好地应用于水质预测。 展开更多
关键词 水质预测 最小二乘回归 支持向量机 预测模型 粒子优化算法
在线阅读 下载PDF
蚁群和遗传算法优化花茶花青素近红外光谱预测模型的比较 被引量:5
15
作者 李艳肖 黄晓玮 +3 位作者 邹小波 赵杰文 石吉勇 张小磊 《食品与生物技术学报》 CAS CSCD 北大核心 2015年第6期575-583,共9页
以建立花茶花青素含量的最优近红外光谱模型为目标,对比研究了蚁群算法(Ant ColonyOptimization,ACO)和遗传算法(Genetic Algorithm,GA)优化近红外光谱谱区的效果。ACO-i PLS将全光谱划分为12个子区间时,优选出第1、9、10共3个子区间,... 以建立花茶花青素含量的最优近红外光谱模型为目标,对比研究了蚁群算法(Ant ColonyOptimization,ACO)和遗传算法(Genetic Algorithm,GA)优化近红外光谱谱区的效果。ACO-i PLS将全光谱划分为12个子区间时,优选出第1、9、10共3个子区间,所建的校正集和预测集相关系数分别为0.901 3和0.864 2;交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.160 0 mg/g和0.202 0 mg/g;GA-i PLS将全光谱划分为15个子区间时,优选出第1、5共2个子区间,所建模型的校正集和预测集相关系数分别为0.906 3和0.879 3,交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.156 0 mg/g和0.206 0 mg/g。研究结果表明:ACO-i PLS和GA-i PLS均可以有效选择近红外光谱特征波长,其中GA-i PLS模型的精度更高。 展开更多
关键词 算法 遗传算法 区间最小二乘 花茶 花青素 定量分析模型
在线阅读 下载PDF
基于相似日和蚁群优化LS-SVM的短期电力负荷预测 被引量:9
16
作者 李如琦 杨立成 +1 位作者 苏媛媛 唐卓贞 《现代电力》 2008年第2期33-37,共5页
由统计学习理论发展的通用学习方法——支持向量机,在解决小样本、非线性及高维数等问题中表现出许多特有的优势。提出了采用最小二乘支持向量机建立负荷预测模型,它是对标准的支持向量机的一种扩展,降低了问题的复杂性,使得计算速度相... 由统计学习理论发展的通用学习方法——支持向量机,在解决小样本、非线性及高维数等问题中表现出许多特有的优势。提出了采用最小二乘支持向量机建立负荷预测模型,它是对标准的支持向量机的一种扩展,降低了问题的复杂性,使得计算速度相对加快。在选取最小二乘支持向量机的训练样本时,采用加权的灰色关联度方法来选择相似日,对不同样本根据其重要性赋予不同的权重,同传统的关联度相比更具客观性。另外,对于最小二乘支持向量机的参数选择问题,针对目前尚无统一有效方法的现状,尝试采用了一种基于蚁群种群的新型优化算法———蚁群算法来优化选择,在很大程度上减少了人为选择参数的主观影响。最后通过实例验证了该模型的有效性,取得了比较满意的预测效果。 展开更多
关键词 负荷预测 加权灰色关联度 最小二乘支持向量机 算法 优化
在线阅读 下载PDF
多约束下多车场车辆路径问题的蚁群算法研究 被引量:11
17
作者 陈美军 张志胜 史金飞 《中国机械工程》 EI CAS CSCD 北大核心 2008年第16期1939-1944,共6页
为节约物流配送费用,提出一类多约束条件下的多车场车辆路径问题。首先建立了在有客户优先级、路况影响、多车型、时间窗和容量等多约束条件下车辆路径问题的数学模型;然后提出了一种自适应的最大-最小蚁群算法,算法结合自适应方法和最... 为节约物流配送费用,提出一类多约束条件下的多车场车辆路径问题。首先建立了在有客户优先级、路况影响、多车型、时间窗和容量等多约束条件下车辆路径问题的数学模型;然后提出了一种自适应的最大-最小蚁群算法,算法结合自适应方法和最大-最小蚁群算法的优点,能适时地控制蚁群算法中的信息素更新过程,扩大搜索范围,避免基本蚁群算法易陷于早熟和"局部最优"以及求解速度慢的不足;最后通过一个实例与禁忌搜索算法进行了对比。实验结果表明:自适应的最大-最小蚁群算法在车辆数、路径长度、路径时间和计算速度方面具有优势。 展开更多
关键词 车辆路径问题 多车场 多约束 客户优先级 自适应的最大-最小算法
在线阅读 下载PDF
蚁群算法在模糊Petri网参数优化中的应用 被引量:11
18
作者 李洋 乐晓波 《计算机应用》 CSCD 北大核心 2007年第3期638-641,共4页
如何确定模糊产生式规则的各项参数对模糊Petri网的建立意义重大。把蚁群算法中的最大-最小系统引入到模糊Petri网的参数寻优过程,提出一种基于线程实现技术的参数优化算法。该算法实现不依赖于经验数据,对初始输入无严格要求。仿真实... 如何确定模糊产生式规则的各项参数对模糊Petri网的建立意义重大。把蚁群算法中的最大-最小系统引入到模糊Petri网的参数寻优过程,提出一种基于线程实现技术的参数优化算法。该算法实现不依赖于经验数据,对初始输入无严格要求。仿真实例表明,经蚁群线程优化算法训练出的参数正确率较高,且所得的模糊Petri网具有较强的泛化能力和自适应功能。 展开更多
关键词 模糊PETRI网 模糊推理 线程技术 算法 最大-最小系统
在线阅读 下载PDF
基于最小二乘支持向量回归的鹅肉弹性的可见-近红外光谱测定 被引量:3
19
作者 赵进辉 袁海超 +2 位作者 刘木华 涂冬成 吁芳 《核农学报》 CAS CSCD 北大核心 2012年第8期1154-1158,共5页
为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(leas... 为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(least square support vector for regression,LSSVR)建立鹅肉弹性的预测模型。试验以万能试验机获取恢复距离S作为鹅肉弹性实际值。在模型建立过程中,先利用sym8小波的2层分解对原始的可见-近红外光谱进行光谱预处理;然后用siPLS优选出4个特征光谱子区间(分别为第3、5、9、13子区间),在这4个特征光谱子区间内继续用GA优选出74个特征波长,并建立基于LSSVR的鹅肉弹性的预测模型。模型预测集的决定系数(R2)和预测均方根误差(root mean squarederror of prediction,RMSEP)分别为0.9096和0.0588。试验结果表明,siPLS结合GA法能够有效提取光谱中的鹅肉弹性对应的特征波长,有利于提高LSSVR模型预测鹅肉弹性的精度。 展开更多
关键词 可见-近红外光谱 弹性 最小二乘支持向量回归 联合区间最小二乘 遗传算法
在线阅读 下载PDF
基于蚁群算法的灰色模型参数估计法 被引量:3
20
作者 张凌霜 王丰效 《统计与决策》 CSSCI 北大核心 2010年第15期159-160,共2页
灰色GM(1,1)预测模型中,发展系数和灰色作用均采用最小二乘方法得到,文章提出了一种采用蚁群算法估计发展系数和灰色作用的新方法,并给出蚁群算法的步骤,最后通过一个我国人口数量预测的实例,表明该方法具有较高的拟合和预测精度。
关键词 灰色GM(1 1)模型 最小二乘原理 算法
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部