期刊文献+
共找到396篇文章
< 1 2 20 >
每页显示 20 50 100
改进蚁群算法优化电动调节阀开度单神经元PID控制
1
作者 祁佳欣 胡绍林 +1 位作者 何红丽 张赛 《科学技术与工程》 北大核心 2025年第19期8135-8141,共7页
针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能... 针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能力,实现PID控制参数的在线整定,并采用改进的蚁群优化算法优化单神经元PID中的学习速率和神经元比例系数,有效克服了单神经元PID中的学习速率和神经元比例系数因经验设定而无法达到预期控制效果的不足。仿真对比结果显示,相比于传统PID、单神经元PID以及基于蚁群优化算法优化单神经元PID 3种控制方法,本文提出的控制方法超调量分别减少了10.2%、6.1%和1.8%,同时调节时间也相应缩短了0.22、0.07、0.03 s,并且表现出更强的自适应和抗干扰能力,能够使阀门开度控制更加稳定可靠。 展开更多
关键词 电动调节阀 阀门开度控制 单神经元PID 改进优化算法
在线阅读 下载PDF
基于改进蚁群算法优化参数的LSSVM短期负荷预测 被引量:39
2
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期3408-3414,共7页
提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找... 提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到模型的最优参数,得到基于MACO算法优化的LSSVM(MACO-LSSVM)预测模型。将优化后的LSSVM模型应用于短期电力负荷预测问题,选择湖南某地区日期为2009-08-01至2009-08-30各小时点的数据进行分析,对2009-08-31该日24 h的负荷进行预测,并与BP神经网络和SVM模型进行比较。研究结果表明:本文方法得到的均方根相对误差为1.71%,比用BP神经网络和SVM模型得到的均方根相对误差分别低1.61%和1.05%。 展开更多
关键词 最小二乘支持向量机 优化算法 参数优化 短期负荷预测
在线阅读 下载PDF
基于蚁群算法优化SA的WMN路由设计与仿真 被引量:1
3
作者 蒋丽丽 陈国彬 张广泉 《传感器与微系统》 CSCD 2015年第5期112-114,126,共4页
针对现有的无线网状网(WMN)路由协议在实际无线信道环境下性能降低的问题,提出了一种基于蚁群模拟退火(ASA)算法的WMN的路由算法。该算法吸收了蚁群算法的适应性、鲁棒性及本质上并行性的优点,并利用模拟退火(SA)算法调整路由的搜索方向... 针对现有的无线网状网(WMN)路由协议在实际无线信道环境下性能降低的问题,提出了一种基于蚁群模拟退火(ASA)算法的WMN的路由算法。该算法吸收了蚁群算法的适应性、鲁棒性及本质上并行性的优点,并利用模拟退火(SA)算法调整路由的搜索方向,使蚁群算法的早熟现象和收敛速度得到了改善。对该算法进行仿真研究,结果表明:该算法在数据包的转发率、端到端延时数据丢失率和归一化路由开销等方面要比常规路由协议优秀很多,大大提高了系统的可靠性、鲁棒性,增强了通信网络的自适应能力。该算法用于WMN路由协议是可行的、有效的。 展开更多
关键词 无线网状网 优化算法 模拟退火算法 路由
在线阅读 下载PDF
基于蚁群算法优化反向传播神经网络的软件质量预测 被引量:7
4
作者 朱嘉豪 郑巍 +2 位作者 杨丰玉 樊鑫 肖鹏 《计算机应用》 CSCD 北大核心 2023年第11期3568-3573,共6页
针对基于反向传播神经网络(BPNN)的软件质量预测模型存在收敛慢、模型精度不高的问题,提出一种基于蚁群算法优化BPNN的软件质量预测(SQP-ACO-BPNN)方法。首先,选择软件质量评价指标,确立软件质量评价体系;其次,采用BPNN构建初始软件质... 针对基于反向传播神经网络(BPNN)的软件质量预测模型存在收敛慢、模型精度不高的问题,提出一种基于蚁群算法优化BPNN的软件质量预测(SQP-ACO-BPNN)方法。首先,选择软件质量评价指标,确立软件质量评价体系;其次,采用BPNN构建初始软件质量预测模型,并利用蚁群优化(ACO)算法确定若干网络结构、网络初始连接权值和阈值;再次,给出网络结构评价函数,选择神经网络模型的最佳结构、网络初始连接权值和阈值;最后,通过BP算法训练该网络,得到最终的软件质量预测模型。在机载嵌入式软件质量预测数据上的实验结果表明,优化后的BPNN模型有效提高了预测的准确率、精确率、召回率和F1值,并且模型能够更快收敛,验证了SQP-ACO-BPNN方法的有效性。 展开更多
关键词 软件质量预测 优化算法 反向传播神经网络 网络结构评价
在线阅读 下载PDF
基于蚁群优化算法的多无人机侦察打击任务仿真系统设计与实现
5
作者 张永晋 瞿崇晓 +2 位作者 范长军 褚进琦 刘硕 《现代电子技术》 北大核心 2025年第15期18-26,共9页
察打一体化无人机集群在现代战争中应用的潜力巨大,但其大规模部署和实战演练的过程复杂,且耗费大量资源。受蚁群觅食行为启发,文中设计并实现了一套基于蚁群优化算法的多无人机侦察打击任务仿真系统,旨在提供一个真实、灵活且直观易用... 察打一体化无人机集群在现代战争中应用的潜力巨大,但其大规模部署和实战演练的过程复杂,且耗费大量资源。受蚁群觅食行为启发,文中设计并实现了一套基于蚁群优化算法的多无人机侦察打击任务仿真系统,旨在提供一个真实、灵活且直观易用的基准平台,以支持多无人机协同任务的仿真和评估。首先,介绍蚁群优化算法的基本原理,并在此基础上设计无人机集群执行察打任务的仿真流程;接着,构建仿真系统的整体架构,研发相应的机群协同智能算法,以优化察打过程中的路径规划,并利用LÖVE 2D框架开发交互式仿真系统;最后,展示三种具有代表性场景下的模拟效果,并进行系统性定量分析。结果表明,该系统能够为用户提供便捷高效的察打任务仿真,助力不同场景下的作战策略评估与优化。 展开更多
关键词 优化算法 无人机集 侦察打击任务 路径规划 交互式仿真 协同智能
在线阅读 下载PDF
融合概率地图法的改进蚁群优化算法无人水面船路径规划
6
作者 白响恩 刘迪 徐笑锋 《上海海事大学学报》 北大核心 2025年第2期1-8,共8页
针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probab... 针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probabilistic roadmap method,PRM)规划的路径作为ACO算法初始信息素分布的依据,提高算法收敛速度;设计同时考虑路径长度和方向性的启发函数,避免传统ACO算法陷入局部最优;加入转角启发函数,减少传统ACO算法拐点数;引入障碍物密度启发函数,提高传统ACO算法规划路径时感知障碍物的能力;利用三次B样条曲线对规划的路径进一步优化,提高路径的平滑性。仿真实验表明:在不同规模的栅格地图上和真实海域环境下,改进ACO算法在拐点数和迭代次数上具有明显优势,且稳定性较好。所提出的改进ACO算法在航海实际应用中具有重要意义。 展开更多
关键词 无人水面船(USV) 路径规划 优化(ACO)算法 概率地图法 真实海域
在线阅读 下载PDF
基于优化蚁群算法的露天矿无人矿卡绕跨并行类三维路径规划
7
作者 高明宇 鲍久圣 +5 位作者 阴妍 胡德平 张可琨 朱晨钟 王茂森 王凯 《煤炭科学技术》 北大核心 2025年第S1期399-411,共13页
随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特... 随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特性,在该场景下的路径规划具有较大难度。针对无人矿卡在路径规划时绕行过多导致行驶效率低、路径质量差的问题,提出了一种基于优化蚁群算法的“类三维”路径规划方法,并通过仿真和试验验证了算法的有效性。首先,设计了一种基于激光点云的类三维地图构建方法,对滤波和配准后的有效点云数据进行栅格化处理并计算栅格高度,得到了包含障碍物高度信息的类三维地图。其次,以无人矿卡为研究对象,设计了一种三维碰撞检测方法,可在横向和纵向上分别判断障碍物与车体的冲突关系,并根据矿卡结构特征与道路工况制定了一种绕跨并行通行策略,直接跨越对车辆无威胁的障碍物,可在保证安全性的前提下有效提高矿卡的通行效率。然后,优化蚁群算法的初始信息素分布,提高算法的目标导向性,在改进信息素更新策略中考虑最优最差路径,以提高路径搜索的性能和效率;引入自适应多步长移动方式,并设计了一种引入跨障评价的多目标启发函数,仿真结果发现:优化后的蚁群算法在较少和较多障碍物场景搜索到的路径长度分别缩短了16.53%、16.79%,且路径拐点的减少有效提高了路径质量,使得算法生成的路径更符合实际需求。最后,通过搭建多障碍物场景模拟露天矿非结构化区域开展实车模拟试验,结果表明:搭载优化蚁群算法的无人矿卡试验车能跨越部分障碍物,在较少障碍物场景中的通行效率提升20.53%,在较多障碍物场景中的通行效率提升31.62%,且未与障碍物发生刮蹭。因此,所提出的基于优化蚁群算法的绕跨并行类三维路径规划方法可有效缩短路径长度,提高搜索效率与路径质量,在保证安全性的前提下充分发挥无人矿卡宽体高底盘特性。研究结果为露天矿卡无人驾驶技术开发及应用提供了理论参考。 展开更多
关键词 露天矿 无人矿卡 路径规划 类三维地图 优化算法
在线阅读 下载PDF
基于改进蚁群优化算法的输电线路智能选线研究
8
作者 谢枫 孟宪乔 +2 位作者 刘耀中 张家倩 都海波 《控制工程》 北大核心 2025年第7期1330-1335,共6页
为了提高输电线路选线的效率,降低输电线路的建设成本,提出了一种基于地理信息系统的改进蚁群优化算法。首先,对规划区域进行栅格化建模,阐述传统蚁群优化算法在输电线路选线中的应用原理;然后,针对传统蚁群优化算法易陷入局部最优和搜... 为了提高输电线路选线的效率,降低输电线路的建设成本,提出了一种基于地理信息系统的改进蚁群优化算法。首先,对规划区域进行栅格化建模,阐述传统蚁群优化算法在输电线路选线中的应用原理;然后,针对传统蚁群优化算法易陷入局部最优和搜索到的路径存在较多拐点的问题,提出了信息素浓度自适应更新机制和节点优化机制对其进行改进。实验以安徽省某区域为例进行输电线路选线。实验结果表明,与传统蚁群优化算法相比,改进蚁群优化算法的搜索效率更高,搜索到的路径具有更少的拐点,可以有效减少输电线路的建设成本。 展开更多
关键词 栅格模型 优化算法 节点优化 智能选线
在线阅读 下载PDF
基于不均匀分配信息素及多目标优化的改进蚁群算法在无人船路径规划中的应用研究
9
作者 谢国兵 贺沩 +2 位作者 胡旺文 苏义鑫 石兵华 《中国舰船研究》 北大核心 2025年第1期115-124,共10页
[目的]针对无人船在复杂水域中路径规划难度大的问题,提出一种基于不均匀分配信息素及多目标优化的改进蚁群优化(ACO)算法。[方法]采用概率路线图法(PRM)得到一条初始路径,依据该路径和终点的方位信息指导ACO算法不均匀分配初始信息素,... [目的]针对无人船在复杂水域中路径规划难度大的问题,提出一种基于不均匀分配信息素及多目标优化的改进蚁群优化(ACO)算法。[方法]采用概率路线图法(PRM)得到一条初始路径,依据该路径和终点的方位信息指导ACO算法不均匀分配初始信息素,使得初始路径和终点附近的信息素浓度大,其他栅格的信息素浓度参照与两者的距离逐渐减少,改善蚂蚁在前期路径搜索盲目性大的问题,缩短计算时间;建立求解多目标路径规划问题的目标函数,通过设定权重来平衡安全指数、能耗和路径曲折度之间的关系,为不同的应用场景生成符合需求的多样化路径,并使信息素增量随路径的优劣进行自适应调整,以强化优质路径在整个蚁群中的影响;同时,设置启发式矩阵系数的自适应调整机制,引入与迭代次数相关的余弦调节因子,以提高ACO算法的寻优效率。对路径进行二次优化以获得全局最优路径,减少航行过程中的频繁转向和转弯幅度。最后,以黄石的“仙岛湖”和杭州的“千岛湖”两个真实湖泊为地图,通过实验将所提算法与其他传统的ACO算法、A^(*)算法和改进ACO算法进行路径规划效果的比较。[结果]结果显示,相比其他传统的ACO算法,所提算法规划的路径最短(减少61.71%),距离障碍物最远,路径曲折度最小,运行时间也得到改善。[结论]实验结果表明,所提算法可降低无人船的航行能耗,减少转弯次数与转弯幅度,提升路径的平滑性和安全性。 展开更多
关键词 无人船 运动规划 多目标优化 优化算法 不均匀分配信息素 概率路线图法
在线阅读 下载PDF
基于蚁群优化算法的电镀试验台分组式调度方法研究
10
作者 汪守斌 王超 《电镀与精饰》 北大核心 2025年第6期9-15,57,共8页
电镀试验台分组式调度涉及多个试验台同时进行不同的电镀任务,每个任务有其特定的加工要求和顺序。然而,在实际操作中,由于任务分配不合理和加工顺序未优化,导致试验台之间的资源冲突、等待时间增加。为提高电镀试验台的工作效率,研究... 电镀试验台分组式调度涉及多个试验台同时进行不同的电镀任务,每个任务有其特定的加工要求和顺序。然而,在实际操作中,由于任务分配不合理和加工顺序未优化,导致试验台之间的资源冲突、等待时间增加。为提高电镀试验台的工作效率,研究基于蚁群优化算法的电镀试验台分组式调度方法。通过基于图论的电镀试验任务分组模型,将电镀试验任务进行合理分组。利用基于蚁群优化算法的分组式调度模型,设计一个旨在实现电镀试验任务加工耗时最短化的目标函数。通过运用蚁群优化算法,求解出满足该目标函数条件的最优分组式电镀任务与仪器的加工顺序,从而实现对电镀试验台的高效分组式调度。实验结果显示:蚁群优化算法使用下,电镀试验台的仪器设备资源使用率与负载均衡度优于对比方法,能够有效优化电镀试验台资源分配效果。 展开更多
关键词 优化算法 电镀任务 试验台 分组式调度 图论方法 深度优先搜索算法
在线阅读 下载PDF
融合随机趋邻策略的协同演化蚁群算法
11
作者 王世科 游晓明 +1 位作者 尹玲 刘升 《计算机集成制造系统》 北大核心 2025年第2期697-710,共14页
针对蚁群算法在求解旅行商问题时收敛速度慢、求解精度低等问题,提出一种融合随机趋邻策略的协同演化蚁群算法。随机趋邻策略首先采用随机分级策略将蚁群随机分为精英蚁和探索蚁,其中随机分级策略能够通过动态调控两类蚂蚁的数量来有效... 针对蚁群算法在求解旅行商问题时收敛速度慢、求解精度低等问题,提出一种融合随机趋邻策略的协同演化蚁群算法。随机趋邻策略首先采用随机分级策略将蚁群随机分为精英蚁和探索蚁,其中随机分级策略能够通过动态调控两类蚂蚁的数量来有效调节算法的多样性和收敛性;然后探索蚁通过趋邻搜索扩大较优解附近的搜索范围,以提高解的精度。协同演化策略采用Jaccard系数判断两类蚂蚁各自最优路径的相似程度,以动态调整两类蚂蚁的交流周期,并平滑其各自最优解公共路径上的信息素,从而实现两类蚂蚁交互进化,进一步提高解的精度。最后通过仿真实验表明,在大规模旅行商问题中,改进算法不仅能够有效平衡算法多样性与收敛性之间的关系,还能提高解的精度。 展开更多
关键词 优化算法 随机趋邻 协同演化 旅行商问题
在线阅读 下载PDF
融合Q-learning的A^(*)预引导蚁群路径规划算法
12
作者 殷笑天 杨丽英 +1 位作者 刘干 何玉庆 《传感器与微系统》 北大核心 2025年第8期143-147,153,共6页
针对传统蚁群优化(ACO)算法在复杂环境路径规划中存在易陷入局部最优、收敛速度慢及避障能力不足的问题,提出了一种融合Q-learning基于分层信息素机制的A^(*)算法预引导蚁群路径规划算法-QHACO算法。首先,通过A^(*)算法预分配全局信息素... 针对传统蚁群优化(ACO)算法在复杂环境路径规划中存在易陷入局部最优、收敛速度慢及避障能力不足的问题,提出了一种融合Q-learning基于分层信息素机制的A^(*)算法预引导蚁群路径规划算法-QHACO算法。首先,通过A^(*)算法预分配全局信息素,引导初始路径快速逼近最优解;其次,构建全局-局部双层信息素协同模型,利用全局层保留历史精英路径经验、局部层实时响应环境变化;最后,引入Q-learning方向性奖励函数优化决策过程,在路径拐点与障碍边缘施加强化引导信号。实验表明:在25×24中等复杂度地图中,QHACO算法较传统ACO算法最优路径缩短22.7%,收敛速度提升98.7%;在50×50高密度障碍环境中,最优路径长度优化16.9%,迭代次数减少95.1%。相比传统ACO算法,QHACO算法在最优性、收敛速度与避障能力上均有显著提升,展现出较强环境适应性。 展开更多
关键词 优化算法 路径规划 局部最优 收敛速度 Q-LEARNING 分层信息素 A^(*)算法
在线阅读 下载PDF
基于细菌觅食-改进蚁群优化算法的水面无人船路径规划 被引量:2
13
作者 毛寿祺 杨平 +1 位作者 高迪驹 刘志全 《控制工程》 CSCD 北大核心 2024年第4期608-616,共9页
为了解决水面无人船全局路径规划问题,提出了一种细菌觅食-改进蚁群优化算法(bacterial foraging-improved ant colony optimization algorithm,BF-IACOA)。相较于传统蚁群优化算法(ant colony optimization algorithm,ACOA),该算法在... 为了解决水面无人船全局路径规划问题,提出了一种细菌觅食-改进蚁群优化算法(bacterial foraging-improved ant colony optimization algorithm,BF-IACOA)。相较于传统蚁群优化算法(ant colony optimization algorithm,ACOA),该算法在路径搜索策略上考虑水面无人船航行需要尽可能减少转向次数和完全规避过大转向角的约束,引入转向角启发因子,综合求解转移概率;同时引入细菌觅食算法的繁殖操作和趋化操作,改进信息素浓度的更新方式,解决传统ACOA容易陷入局部最优解和收敛速度较慢的问题。仿真结果表明,相较于传统ACOA,BF-IACOA的全局搜索能力得到较大幅度的提升,并且收敛迭代次数减少超过30%;在实际水域环境模型下,BF-IACOA可以通过14次迭代为无人船规划出全局可行路径。 展开更多
关键词 水面无人船 改进优化算法 细菌觅食算法 全局路径规划 转向
在线阅读 下载PDF
基于改进蚁群算法的焊接机器人路径规划方法
14
作者 林梦成 薛波 刘昕宇 《传感器与微系统》 北大核心 2025年第7期24-27,31,共5页
为了解决焊接机器人路径规划效率低的问题,提出一种基于改进蚁群优化(IACO)算法的焊接路径规划方法。该方法引入Tent混沌初始化,优化初始信息素的分布;改进大规模邻域搜索结构,解决了局部搜索能力不足的问题;优化信息素更新方式,平衡了... 为了解决焊接机器人路径规划效率低的问题,提出一种基于改进蚁群优化(IACO)算法的焊接路径规划方法。该方法引入Tent混沌初始化,优化初始信息素的分布;改进大规模邻域搜索结构,解决了局部搜索能力不足的问题;优化信息素更新方式,平衡了蚁群优化(ACO)算法的多样性和收敛速度。然后,使用IACO算法计算最佳焊接路径,并将其与传统ACO算法和其他改进优化算法的结果进行对比。实验结果表明,所提算法具有更短的焊接路径和更快的收敛速率,有效提高了焊接机器人的工作效率。 展开更多
关键词 焊接机器人 路径规划 混沌初始化 大规模邻域搜索算法 动态信息素 优化算法
在线阅读 下载PDF
蚁群优化算法协同深度极限学习机的热连轧宽度预测模型
15
作者 李嘉林 高杰 丁敬国 《材料与冶金学报》 CAS 北大核心 2024年第5期497-504,共8页
热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM... 热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM网络中,以提高其预测精度和泛化能力.先利用数据预处理方法对原始数据进行异常值的剔除和数据归一化.然后,使用蚁群优化算法对DELM的隐藏层节点数、迭代次数进行优化,在隐藏层节点数达到95个、迭代次数为480次时,DELM模型的预测性能最佳,其在预测不同规格带钢平均宽度时,决定系数R^(2)达到0.9989,97.98%的样本点预测误差分布在-7~7 mm.应用结果表明,与传统的深度极限学习机(DELM)、卷积神经网络(CNN)等模型相比,ACO-DELM模型在预测精度和泛化能力上有明显的提升,可有效应用于热轧带钢的平均宽度预测. 展开更多
关键词 热连轧 优化算法 深度极限学习机 宽度预测
在线阅读 下载PDF
基于动态自适应蚁群优化算法的移动机器人路径规划
16
作者 聂清彬 《计算机应用》 CSCD 北大核心 2024年第S01期351-354,共4页
针对传统蚁群优化(ACO)算法在移动机器人路径规划中存在易陷入局部最优、优化速度慢、搜索路径停滞、获取的最优解质量差、优化路径太长等问题,提出动态自适应蚁群优化(DSA-ACO)算法用于移动机器人全局路径规划。在传统ACO算法基础上融... 针对传统蚁群优化(ACO)算法在移动机器人路径规划中存在易陷入局部最优、优化速度慢、搜索路径停滞、获取的最优解质量差、优化路径太长等问题,提出动态自适应蚁群优化(DSA-ACO)算法用于移动机器人全局路径规划。在传统ACO算法基础上融合了A*算法,改进了传统ACO算法当中的期望启发信息,加入可能陷入U型障碍物陷阱的防死锁机制,改进信息素更新方式,包括:利用最大最小蚂蚁系统设置信息素浓度的最大最小值,防止搜索出现停滞现象;加入动态调整因子动态增强最优路径上的信息素浓度,降低较差路径上的信息素浓度,使得后续蚂蚁的选择方向更明确,引导蚂蚁朝全局最优路径上移动,加速算法收敛。仿真实验结果表明:改进算法的收敛速度比传统ACO算法提高了20%以上,验证了改进算法的可行性、有效性和优越性。 展开更多
关键词 移动机器人 优化算法 路径规划 自适应调整 信息素
在线阅读 下载PDF
基于改进蚁群算法的机器人末端路径排序优化 被引量:6
17
作者 张铁 苏杰汶 《中国机械工程》 EI CAS CSCD 北大核心 2016年第19期2624-2629,共6页
建立了针对机器人加工时的末端运动路径排序优化问题的数学模型,将该模型转化为广义旅行商问题并用蚁群算法求解。同时对经典的蚁群算法进行了改进,即采用多阶段搜索策略、邻域搜索策略及多蚁种搜索策略,使改进后的蚁群算法能为机器人... 建立了针对机器人加工时的末端运动路径排序优化问题的数学模型,将该模型转化为广义旅行商问题并用蚁群算法求解。同时对经典的蚁群算法进行了改进,即采用多阶段搜索策略、邻域搜索策略及多蚁种搜索策略,使改进后的蚁群算法能为机器人求取一条更优的末端运动路径。计算机仿真与机器人加工实验结果表明,改进蚁群算法所得的末端运动路径比基本蚁群算法所得结果缩短了3%以上。 展开更多
关键词 机器人 路径排序优化 旅行商问题 改进蚁群算法优化
在线阅读 下载PDF
基于位置和能耗启发的改进蚁群算法路径规划 被引量:4
18
作者 李春青 黄勇萍 刘娟 《传感器与微系统》 CSCD 北大核心 2024年第10期132-136,共5页
为了解决经典蚁群优化算法应用于移动机器人路径规划中存在综合寻优能力差、收敛速度慢和复杂环境中算法鲁棒性不强等问题,提出了一种基于位置和能耗启发的改进蚁群优化算法。综合考虑机器人行进路径长度、行进路径坡度和转弯带来的能... 为了解决经典蚁群优化算法应用于移动机器人路径规划中存在综合寻优能力差、收敛速度慢和复杂环境中算法鲁棒性不强等问题,提出了一种基于位置和能耗启发的改进蚁群优化算法。综合考虑机器人行进路径长度、行进路径坡度和转弯带来的能耗问题,提出综合能耗启发因子;考虑路径起点与终点之间,直线距离最短,提出到起止点直线距离启发因子,引导蚂蚁往起止点直线附近路径靠近;提出到终点距离启发因子,引导蚂蚁往目标点方向行进。设计了综合三种启发因子的启发函数,优化状态转移计算方式。此外,通过引入动态信息素挥发因子、改进信息素增量、设计信息素限制等优化信息素更新策略。多种环境多次仿真实验结果对比分析表明,改进算法在寻优路径长度、路径高度均方差、综合性能等方面具有更加优秀的表现。 展开更多
关键词 优化算法 路径规划 能耗启发因子 移动机器人
在线阅读 下载PDF
双重信息引导的蚁群算法求解绿色多舱车辆路径问题
19
作者 郭宁 申秋义 +3 位作者 钱斌 那靖 胡蓉 毛剑琳 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1067-1078,共12页
针对当前实际运输中广泛存在的绿色多舱车辆路径问题(GMCVRP),文章提出一种双重信息引导的蚁群优化算法(DIACO)进行求解.首先,在DIACO的全局搜索阶段,重新构建传统蚁群优化算法(TACO)中的信息素浓度矩阵(PCM),使其同时包含客户块信息和... 针对当前实际运输中广泛存在的绿色多舱车辆路径问题(GMCVRP),文章提出一种双重信息引导的蚁群优化算法(DIACO)进行求解.首先,在DIACO的全局搜索阶段,重新构建传统蚁群优化算法(TACO)中的信息素浓度矩阵(PCM),使其同时包含客户块信息和客户序列信息,即建立具有双重信息的PCM(DIPCM),从而更全面学习和累积优质解的信息;采用3种启发式方法生成较高质量个体,用于初始化DIPCM,可快速引导算法朝向解空间中优质区域进行搜索.其次,在DIACO的局部搜索阶段,设计结合自适应策略的多种变邻域操作,用于对解空间的优质区域执行深入搜索.再次,提出信息素浓度平衡机制,以防止搜索陷入停滞.最后,使用不同规模的算例进行仿真测试和算法对比,结果验证了DIACO是求解GMCVRP的有效算法. 展开更多
关键词 多舱车辆路径问题 绿色 优化算法 双重信息引导 信息素浓度平衡机制
在线阅读 下载PDF
基于蚁群优化算法的机组最优投入 被引量:36
20
作者 郝晋 石立宝 +1 位作者 周家启 徐国禹 《电网技术》 EI CSCD 北大核心 2002年第11期26-31,共6页
机组最优投入问题(optimal Unit Commitment,UC)是寻求1个周期内各个负荷水平下机组的最优组合方式及开停机计划,使运行费用为最小。该问题是一个高维数、非凸的、离散的、非线性的优化问题,很难找出理论上的最优解,但由于它能带来显著... 机组最优投入问题(optimal Unit Commitment,UC)是寻求1个周期内各个负荷水平下机组的最优组合方式及开停机计划,使运行费用为最小。该问题是一个高维数、非凸的、离散的、非线性的优化问题,很难找出理论上的最优解,但由于它能带来显著的经济效益,所以受到了国内外很多学者的广泛关注。作者尝试采用一种新型的模拟进化优化算法——蚁群优化算法(ACO)来求解该问题。首先,利用状态、决策及作者提出的路径概念把UC设计成类似于旅行商(TSP)问题的模式,从而可以方便地利用ACO来求解。其次,由于ACO处理的是无约束优化问题,对于UC这一约束优化问题,提出了不同的方法来处理各种约束。用tabu表限制不满足旋转备用约束和机组最小启/停时间约束的状态;通过附加惩罚项来处理线路N安全性约束。数值算例验证了此算法的可行性和有效性。 展开更多
关键词 优化算法 机组最优投入 发生机组 tabu表 经济调度 电力系统
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部