期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于改进的蚁群优化算法的三维空间路径搜索算法 被引量:6
1
作者 李浩宇 吕梅柏 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第4期563-568,共6页
针对传统二维平面的随机搜索算法——蚁群优化算法不能满足三维空间路径搜索以及快速性要求等问题,提出了改进的方法。基于栅格离散方法创建空间环境地图,通过引入搜索主方向、可视域及可行域等定义将搜索算法扩展至三维空间,建立了三... 针对传统二维平面的随机搜索算法——蚁群优化算法不能满足三维空间路径搜索以及快速性要求等问题,提出了改进的方法。基于栅格离散方法创建空间环境地图,通过引入搜索主方向、可视域及可行域等定义将搜索算法扩展至三维空间,建立了三维空间下的蚁群优化算模型,并给出该方法的搜索流程。而后根据此模型及流程实现了仿真程序,得到仿真结果,并与传统方法做出了分析比较,得出该改进方法具有较快的收敛速度、较好的稳定性和更高的计算效率。 展开更多
关键词 蚁群优化算 栅格法 三维搜索
在线阅读 下载PDF
PEMFCs degradation prediction based on ENSACO-LSTM
2
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部