期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于变分模态分解的休息态虚拟现实晕动症脑电自动检测
被引量:
2
1
作者
化成城
柴立宁
+2 位作者
周占峰
陈旭
刘佳
《电子测量与仪器学报》
CSCD
北大核心
2024年第2期171-181,共11页
虚拟现实晕动症的存在是制约VR技术行业进一步发展的关键因素,研究虚拟现实晕动症相关的神经活动及对其准确检测是解决此问题的前提,此前研究缺少对休息态虚拟现实晕动症神经活动的研究。因此,本研究利用虚拟现实晕动症暴露任务前后休...
虚拟现实晕动症的存在是制约VR技术行业进一步发展的关键因素,研究虚拟现实晕动症相关的神经活动及对其准确检测是解决此问题的前提,此前研究缺少对休息态虚拟现实晕动症神经活动的研究。因此,本研究利用虚拟现实晕动症暴露任务前后休息态脑电信号,提出虚拟现实晕动症脑电特征作为指标实现对虚拟现实晕动症的检测。首先,通过统计分析对所选的5个电极即Fp1、Fp2、F8、T7及T8的脑电信号分别进行变分模态分解,并从选中的模态分量中提取样本熵、排列熵及中心频率。然后,通过统计检验和ReliefF算法进行两个阶段的特征选择。最后,将选择的特征向量送入支持向量机中进行分类,进而实现对虚拟现实晕动症的自动检测。结果表明,此方法准确率、灵敏度及特异度分别达到了98.3%、98.5%及98.1%,ROC曲线下的面积值达到了1,优于其他方法,证明了此方法在虚拟现实晕动症脑电信号自动检测方面优势与有效性。
展开更多
关键词
虚拟现实晕动症脑电
变分模态分解
样本熵
排列熵
中心频率
在线阅读
下载PDF
职称材料
题名
基于变分模态分解的休息态虚拟现实晕动症脑电自动检测
被引量:
2
1
作者
化成城
柴立宁
周占峰
陈旭
刘佳
机构
南京信息工程大学自动化学院
出处
《电子测量与仪器学报》
CSCD
北大核心
2024年第2期171-181,共11页
基金
国家自然科学基金(62206130)
江苏省自然科技计划(BK20200821)
南京信息工程大学科研启动经费(2020r075)项目资助。
文摘
虚拟现实晕动症的存在是制约VR技术行业进一步发展的关键因素,研究虚拟现实晕动症相关的神经活动及对其准确检测是解决此问题的前提,此前研究缺少对休息态虚拟现实晕动症神经活动的研究。因此,本研究利用虚拟现实晕动症暴露任务前后休息态脑电信号,提出虚拟现实晕动症脑电特征作为指标实现对虚拟现实晕动症的检测。首先,通过统计分析对所选的5个电极即Fp1、Fp2、F8、T7及T8的脑电信号分别进行变分模态分解,并从选中的模态分量中提取样本熵、排列熵及中心频率。然后,通过统计检验和ReliefF算法进行两个阶段的特征选择。最后,将选择的特征向量送入支持向量机中进行分类,进而实现对虚拟现实晕动症的自动检测。结果表明,此方法准确率、灵敏度及特异度分别达到了98.3%、98.5%及98.1%,ROC曲线下的面积值达到了1,优于其他方法,证明了此方法在虚拟现实晕动症脑电信号自动检测方面优势与有效性。
关键词
虚拟现实晕动症脑电
变分模态分解
样本熵
排列熵
中心频率
Keywords
virtual reality motion sickness EEG
variational mode decomposition
sample entropy
permutation entropy
center frequency
分类号
TN911.7 [电子电信—通信与信息系统]
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于变分模态分解的休息态虚拟现实晕动症脑电自动检测
化成城
柴立宁
周占峰
陈旭
刘佳
《电子测量与仪器学报》
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部