期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于FNN-UKF神经网络的氧化铝浓度动态预测模型 被引量:4
1
作者 易军 李太福 +2 位作者 侯杰 姚立忠 田应甫 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2013年第1期169-174,共6页
针对影响氧化铝浓度的因素较多,彼此相关性强,难以建立动态预测模型的问题,提出一种基于FNN-UKF神经网络的动态预测方法。首先考察各原始变量置零前后在特征空间主元投影上的相似度,判断其对氧化铝浓度的解释能力,由此进行原始变量选择... 针对影响氧化铝浓度的因素较多,彼此相关性强,难以建立动态预测模型的问题,提出一种基于FNN-UKF神经网络的动态预测方法。首先考察各原始变量置零前后在特征空间主元投影上的相似度,判断其对氧化铝浓度的解释能力,由此进行原始变量选择;再将约简后的原始变量输入基于UKF算法的神经网络预测模型,通过更新状态估计值和方差矩阵提高模型的泛化能力。对取自某厂160KA大型预焙槽的247组样本数据进行检验:228组样本的预测误差在±1%之内,计算量减少52.07%,表明该方法在保证预测精度的同时,有效降低了模型学习的计算量。 展开更多
关键词 虚假最近邻法 核主成分分析 预测 氧化铝浓度 神经网络
在线阅读 下载PDF
基于相空间重构的神经网络短期风速预测 被引量:17
2
作者 廖志强 李太福 +2 位作者 余德均 程杨 姚立忠 《江南大学学报(自然科学版)》 CAS 2012年第1期14-18,共5页
针对风速具有较强的混沌特性,预测难度较大,提出了一种基于相空间重构的神经网络短期风速预测方法:对数据进行小波降噪,运用互信息法和虚假最近邻点法确定最佳的延迟时间和嵌入维数,对样本空间进行重构,使新的样本能够表征原始时间序列... 针对风速具有较强的混沌特性,预测难度较大,提出了一种基于相空间重构的神经网络短期风速预测方法:对数据进行小波降噪,运用互信息法和虚假最近邻点法确定最佳的延迟时间和嵌入维数,对样本空间进行重构,使新的样本能够表征原始时间序列动态特性,更能反映风速变化特性。在此基础上运用BP神经网络进行短期风速预测。实验结果表明短期风速预测精度得到提高。 展开更多
关键词 相空间重构 互信息 虚假最近 BP神经网络 风速预测
在线阅读 下载PDF
基于ICA_FNN的软传感器建模过程原始特征选择 被引量:2
3
作者 李太福 苏盈盈 +2 位作者 易军 姚立忠 徐敏 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期736-742,共7页
针对软传感器建模过程中辅助变量通常是多因素的混杂信号,在原始特征空间很难进行原始特征约简的问题,提出一种结合独立成分分析(ICA)和虚假最近邻点法(FNN)的原始特征选择法。利用独立成分分析法(ICA)将原始特征空间的混杂信号映射到... 针对软传感器建模过程中辅助变量通常是多因素的混杂信号,在原始特征空间很难进行原始特征约简的问题,提出一种结合独立成分分析(ICA)和虚假最近邻点法(FNN)的原始特征选择法。利用独立成分分析法(ICA)将原始特征空间的混杂信号映射到新的独立特征子空间;然后再利用FNN计算每个原始特征剔除前后在独立特征子空间里的相似性测度,进而判断它对主导变量的影响能力,由此选择出原始特征。仿真结果表明,该方法具有优秀的原始特征选择能力。因此,该研究为选择出软传感器模型的原始特征提供了新方法。 展开更多
关键词 软传感器 特征子空间 独立成分分析 虚假最近 特征选择
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部