虚假数据攻击利用输电网状态估计中基于残差的不良数据检测漏洞,通过向数据采集与监控系统(supervisory control and data acquisition,SCADA)系统中注入虚假数据,达到修改电力系统的量测值和状态变量、控制电力系统的运行状态或者获取...虚假数据攻击利用输电网状态估计中基于残差的不良数据检测漏洞,通过向数据采集与监控系统(supervisory control and data acquisition,SCADA)系统中注入虚假数据,达到修改电力系统的量测值和状态变量、控制电力系统的运行状态或者获取经济利益等不法目的。阐述了虚假数据攻击的基本理论和实现机制,并从攻击方法和防御策略、电力系统信息完整性、基于传统虚假数据攻击(false data injection attacks,FDIAs)扩展的攻击方式和攻击向量优化算法4个方面梳理了虚假数据攻击的研究现状和发展情况,分析了现有研究成果的优点和不足。在此基础上,从虚假数据攻击对分布式状态估计的影响、相量测量单元(phasor measurementunit,PMU)/SCADA混合量测下虚假数据攻击和多代理技术在虚假数据攻击防御中的应用3个方面对虚假数据攻击研究进行了展望。展开更多
虚假数据攻击(false data attack, FDA)是通过对电网中远程终端单元(remote terminal unit, RTU)、同步相量测量单元(phasor measurement unit, PMU)等通信环节的攻击,误导电力系统的状态估计,给电力系统的安全可靠运行带来巨大威胁。...虚假数据攻击(false data attack, FDA)是通过对电网中远程终端单元(remote terminal unit, RTU)、同步相量测量单元(phasor measurement unit, PMU)等通信环节的攻击,误导电力系统的状态估计,给电力系统的安全可靠运行带来巨大威胁。构建了电网虚假数据攻击检测架构、电压信号状态空间模型和虚假数据攻击模型,提出了非负定自适应卡尔曼滤波算法来估计模型中的状态量,旨在准确检测电力系统中的虚假数据。通过对3节点电力系统仿真,结果验证文中所提的算法在保证滤波稳定性的同时,提高了攻击检测的运算速度。展开更多
由于虚假数据注入攻击(false data injection attack,FDIA)对电力信息物理系统(grid cyberphysical systems,GCPS)的破坏性较强,且威胁性较大,针对其难以被有效检测难题,提出一种基于加权最小二乘法(weighted least squares,WLS)和改进...由于虚假数据注入攻击(false data injection attack,FDIA)对电力信息物理系统(grid cyberphysical systems,GCPS)的破坏性较强,且威胁性较大,针对其难以被有效检测难题,提出一种基于加权最小二乘法(weighted least squares,WLS)和改进的无迹卡尔曼(unscented Kalman filter,UKF)的电网虚假数据检测方法。对FDIA进行了数学建模,并通过对残差进行分析以说明FDIA的难以检测性,在有攻击向量的情况下,将改进的UKF用于系统的状态估计,同时利用WLS对系统迅速响应的优势,也对系统进行状态估计,采用一致性检验对2种方法的估计结果进行检测,最终判断是否存在FDIA。在IEEE14节点和IEEE57节点上进行实验分析并与支持向量机的检测方法进行检测成功率的对比,仿真结果表明,FDIA可被准确检测,从而验证了本文方法的可行性及有效性。展开更多
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先...电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。展开更多
从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CP...从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CPS远程状态估计的性能.首先,利用残差的统计特征计算远程状态估计误差协方差,将FDI最优策略问题转化为二次约束优化问题.其次,在攻击隐蔽性的约束下,运用拉格朗日乘子法及半正定规划推导出最优策略.最后,通过仿真实验验证所提方法与现有方法相比在隐蔽性方面具有显著优势.展开更多
面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线...面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线性地衡量数据特征之间的关联性,且公平地根据一个特征变量中包含另一个特征变量的信息量来去除冗余特征,有效解决虚假数据注入攻击定位检测方法普遍面临的量测数据高维冗余问题;同时提出一种具有正反馈信息传递作用的双层置信极端梯度提升树来对各节点状态进行分类,通过结合电网拓扑关系学习标签相关性,从而有选择性地利用前序标签有效预测信息,来减少后续分类器学习到的前序标签预测信息中包含的错误,最终实现对受攻击位置的精确定位。在IEEE-14、IEEE-57节点系统上进行大量仿真,算例结果验证了所提方法的有效性,且相较于其他方法具有更高的准确率、精度、召回率、F1值和AUC(area under curve)值。展开更多
针对受扰移动机器人系统自触发模型预测控制(self-triggered model predictive control,STMPC)在虚假数据注入(false data injection,FDI)攻击下的安全控制问题,提出了一种基于输入重构的弹性STMPC方法。结合自触发机制非周期采样特性和...针对受扰移动机器人系统自触发模型预测控制(self-triggered model predictive control,STMPC)在虚假数据注入(false data injection,FDI)攻击下的安全控制问题,提出了一种基于输入重构的弹性STMPC方法。结合自触发机制非周期采样特性和FDI攻击模型,设计了一种基于关键数据的输入重构机制,以减弱FDI攻击对被控系统的影响。根据状态误差的最优控制问题,设计了重构参数的确定方法,以保证系统在应用重构控制输入后的控制性能。详细分析了所提出弹性STMPC算法的稳定性以及算法可行性。通过仿真和实验验证了所提出算法的有效性。展开更多
在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安...在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安全性。为此建立了包含可再生能源及储能系统的LFC状态空间模型,并分析了FDIA对系统动态特性的影响。通过状态空间分解方法将攻击信号解耦为控制输入攻击和测量攻击,提高检测精度。基于滑模观测器设计攻击估计方法,实现对攻击信号的实时检测。进一步结合H∞控制理论,提出了抗攻击控制(attack-resilient control,ARC)策略,以增强系统在攻击环境下的鲁棒性。仿真算例表明:与传统方法相比攻击估计均方误差降低约30%,系统频率响应稳定性显著提升。结果表明,该方法能够有效检测FDIA并提高电力系统的安全性和抗干扰能力。展开更多
文摘虚假数据攻击利用输电网状态估计中基于残差的不良数据检测漏洞,通过向数据采集与监控系统(supervisory control and data acquisition,SCADA)系统中注入虚假数据,达到修改电力系统的量测值和状态变量、控制电力系统的运行状态或者获取经济利益等不法目的。阐述了虚假数据攻击的基本理论和实现机制,并从攻击方法和防御策略、电力系统信息完整性、基于传统虚假数据攻击(false data injection attacks,FDIAs)扩展的攻击方式和攻击向量优化算法4个方面梳理了虚假数据攻击的研究现状和发展情况,分析了现有研究成果的优点和不足。在此基础上,从虚假数据攻击对分布式状态估计的影响、相量测量单元(phasor measurementunit,PMU)/SCADA混合量测下虚假数据攻击和多代理技术在虚假数据攻击防御中的应用3个方面对虚假数据攻击研究进行了展望。
文摘虚假数据攻击(false data attack, FDA)是通过对电网中远程终端单元(remote terminal unit, RTU)、同步相量测量单元(phasor measurement unit, PMU)等通信环节的攻击,误导电力系统的状态估计,给电力系统的安全可靠运行带来巨大威胁。构建了电网虚假数据攻击检测架构、电压信号状态空间模型和虚假数据攻击模型,提出了非负定自适应卡尔曼滤波算法来估计模型中的状态量,旨在准确检测电力系统中的虚假数据。通过对3节点电力系统仿真,结果验证文中所提的算法在保证滤波稳定性的同时,提高了攻击检测的运算速度。
文摘由于虚假数据注入攻击(false data injection attack,FDIA)对电力信息物理系统(grid cyberphysical systems,GCPS)的破坏性较强,且威胁性较大,针对其难以被有效检测难题,提出一种基于加权最小二乘法(weighted least squares,WLS)和改进的无迹卡尔曼(unscented Kalman filter,UKF)的电网虚假数据检测方法。对FDIA进行了数学建模,并通过对残差进行分析以说明FDIA的难以检测性,在有攻击向量的情况下,将改进的UKF用于系统的状态估计,同时利用WLS对系统迅速响应的优势,也对系统进行状态估计,采用一致性检验对2种方法的估计结果进行检测,最终判断是否存在FDIA。在IEEE14节点和IEEE57节点上进行实验分析并与支持向量机的检测方法进行检测成功率的对比,仿真结果表明,FDIA可被准确检测,从而验证了本文方法的可行性及有效性。
文摘电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。
文摘从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CPS远程状态估计的性能.首先,利用残差的统计特征计算远程状态估计误差协方差,将FDI最优策略问题转化为二次约束优化问题.其次,在攻击隐蔽性的约束下,运用拉格朗日乘子法及半正定规划推导出最优策略.最后,通过仿真实验验证所提方法与现有方法相比在隐蔽性方面具有显著优势.
文摘面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线性地衡量数据特征之间的关联性,且公平地根据一个特征变量中包含另一个特征变量的信息量来去除冗余特征,有效解决虚假数据注入攻击定位检测方法普遍面临的量测数据高维冗余问题;同时提出一种具有正反馈信息传递作用的双层置信极端梯度提升树来对各节点状态进行分类,通过结合电网拓扑关系学习标签相关性,从而有选择性地利用前序标签有效预测信息,来减少后续分类器学习到的前序标签预测信息中包含的错误,最终实现对受攻击位置的精确定位。在IEEE-14、IEEE-57节点系统上进行大量仿真,算例结果验证了所提方法的有效性,且相较于其他方法具有更高的准确率、精度、召回率、F1值和AUC(area under curve)值。
文摘针对受扰移动机器人系统自触发模型预测控制(self-triggered model predictive control,STMPC)在虚假数据注入(false data injection,FDI)攻击下的安全控制问题,提出了一种基于输入重构的弹性STMPC方法。结合自触发机制非周期采样特性和FDI攻击模型,设计了一种基于关键数据的输入重构机制,以减弱FDI攻击对被控系统的影响。根据状态误差的最优控制问题,设计了重构参数的确定方法,以保证系统在应用重构控制输入后的控制性能。详细分析了所提出弹性STMPC算法的稳定性以及算法可行性。通过仿真和实验验证了所提出算法的有效性。
文摘在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安全性。为此建立了包含可再生能源及储能系统的LFC状态空间模型,并分析了FDIA对系统动态特性的影响。通过状态空间分解方法将攻击信号解耦为控制输入攻击和测量攻击,提高检测精度。基于滑模观测器设计攻击估计方法,实现对攻击信号的实时检测。进一步结合H∞控制理论,提出了抗攻击控制(attack-resilient control,ARC)策略,以增强系统在攻击环境下的鲁棒性。仿真算例表明:与传统方法相比攻击估计均方误差降低约30%,系统频率响应稳定性显著提升。结果表明,该方法能够有效检测FDIA并提高电力系统的安全性和抗干扰能力。