Microstructure and electrical properties of La2 O3-doped ZnO-Bi2 O3 thin films prepared by sol–gel process have been investigated.X-ray diffraction shows that most diffraction peaks of ZnO are equal,and the crystals ...Microstructure and electrical properties of La2 O3-doped ZnO-Bi2 O3 thin films prepared by sol–gel process have been investigated.X-ray diffraction shows that most diffraction peaks of ZnO are equal,and the crystals of ZnO grow well.Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness.The nonlinear V–I characteristics of the films show that La2 O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion,with the leakage current of 0.25 mA,the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2...A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.展开更多
In this study,a high-purity In_(2)Ga_(2)ZnO_(7) ceramic target was used to deposit indium gallium zinc oxide(IGZO)films by RF magnetron sputtering technology.The microstructure,growth state,optical and electrical prop...In this study,a high-purity In_(2)Ga_(2)ZnO_(7) ceramic target was used to deposit indium gallium zinc oxide(IGZO)films by RF magnetron sputtering technology.The microstructure,growth state,optical and electrical properties of the IGZO films were studied.The results showed that the surface of the IGZO film was uniform and smooth at room temperature.As the substrate temperature increased,the surface roughness of the film gradually increased.From room temperature to 300℃,all the films maintained amorphous phase and good thermal stabilities.Moreover,the transmission in the visible region decreased from 91.93%to 91.08%,and the band gap slightly decreased from 3.79 to 3.76 eV.The characterization of the film via atomic force microscope(AFM)and X-ray photoelectron spectroscopy(XPS)demonstrated that the film prepared at room temperature exhibited the lowest surface roughness and the largest content of oxygen vacancies.With the rise in temperature,the non-homogeneous particle distribution,increase in the surface roughness,and reduction in the number of oxygen vacancies resulted in lower performance of theα-IGZO film.Comprehensive analysis showed that the best optical and electrical properties can be obtained by depositing IGZO films at room temperature,which indicates their potential applications in flexible substrates.展开更多
Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0...Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.展开更多
基金Project(20123227120021)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(BK2012156)supported by the Natural Science Foundation of Jiangsu Province,China+3 种基金Project(KFJJ201105)supported by the Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject(CJ20125001)supported by the Application Program for Basic Research of Changzhou,ChinaProject(13KJB430006)supported by the Universities Natural Science Research project of Jiangsu Province,ChinaProject supported by the Industrial Center of Jiangsu University Undergraduate Practice-Innovation Training Program,China
文摘Microstructure and electrical properties of La2 O3-doped ZnO-Bi2 O3 thin films prepared by sol–gel process have been investigated.X-ray diffraction shows that most diffraction peaks of ZnO are equal,and the crystals of ZnO grow well.Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness.The nonlinear V–I characteristics of the films show that La2 O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion,with the leakage current of 0.25 mA,the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
文摘A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.
基金Project(2018M632797)supported by the Postdoctoral Science Foundation of ChinaProject(52004253)supported by the National Natural Science Foundation of China。
文摘In this study,a high-purity In_(2)Ga_(2)ZnO_(7) ceramic target was used to deposit indium gallium zinc oxide(IGZO)films by RF magnetron sputtering technology.The microstructure,growth state,optical and electrical properties of the IGZO films were studied.The results showed that the surface of the IGZO film was uniform and smooth at room temperature.As the substrate temperature increased,the surface roughness of the film gradually increased.From room temperature to 300℃,all the films maintained amorphous phase and good thermal stabilities.Moreover,the transmission in the visible region decreased from 91.93%to 91.08%,and the band gap slightly decreased from 3.79 to 3.76 eV.The characterization of the film via atomic force microscope(AFM)and X-ray photoelectron spectroscopy(XPS)demonstrated that the film prepared at room temperature exhibited the lowest surface roughness and the largest content of oxygen vacancies.With the rise in temperature,the non-homogeneous particle distribution,increase in the surface roughness,and reduction in the number of oxygen vacancies resulted in lower performance of theα-IGZO film.Comprehensive analysis showed that the best optical and electrical properties can be obtained by depositing IGZO films at room temperature,which indicates their potential applications in flexible substrates.
基金Project(2004AA513023) supported by the National High Technology Research and Development Program of China
文摘Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.