期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Swin-TDL算法的果园环境下葡萄病害检测方法
1
作者 胡国玉 刘广 +2 位作者 周星光 董娅兰 周建平 《中国农机化学报》 北大核心 2024年第8期234-239,共6页
为在果园复杂环境因素下准确检测葡萄病害,提出一种基于Swin Transformer的葡萄病害检测模型Swin-TDL。采用Kmeans++聚类算法计算模型输入图像的锚框以提高检测精度;以Swin Transformer网络作为Swin-TDL的骨干网络更准确地获取目标特征... 为在果园复杂环境因素下准确检测葡萄病害,提出一种基于Swin Transformer的葡萄病害检测模型Swin-TDL。采用Kmeans++聚类算法计算模型输入图像的锚框以提高检测精度;以Swin Transformer网络作为Swin-TDL的骨干网络更准确地获取目标特征信息;特征金字塔网络和路径聚合网络用于融合骨干网络中不同深度的特征层信息以增强检测目标的语义信息和定位信息;使用SIoU损失函数作为边界回归预测损失函数用于提高训练的速度和模型推理的准确性;使用Soft-NMS对目标边界框后处理以提高遮挡及重叠目标的检出率。在田间葡萄病害数据集中进行模型训练和性能测试,结果表明,Swin-TDL模型的平均精度均值为92.7%,平均检测时间为15.3 ms,综合性能优于对比检测算法,可以为葡萄植保装备研究提供参考。 展开更多
关键词 葡萄病害检测 果园复杂环境 图像增强 深度学习 Swin Transformer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部