期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于改进卷积神经网络的葡萄叶片病害集成识别方法 被引量:1
1
作者 陈诗瑶 孔淳 +2 位作者 冯峰 王志军 孙博 《山东农业大学学报(自然科学版)》 北大核心 2024年第6期950-960,共11页
为有效提升葡萄叶片病害识别的精度和效率,实现葡萄病害的及时防治进而提高产量和质量,本文提出一种基于改进卷积神经网络的葡萄叶片病害集成识别方法,对常见的三种葡萄叶片病害进行自动准确的识别。首先,利用Bagging集成学习算法生成... 为有效提升葡萄叶片病害识别的精度和效率,实现葡萄病害的及时防治进而提高产量和质量,本文提出一种基于改进卷积神经网络的葡萄叶片病害集成识别方法,对常见的三种葡萄叶片病害进行自动准确的识别。首先,利用Bagging集成学习算法生成多个有差异的训练子集;然后,将SE、CA注意力机制分别引入ResNet152、DenseNet121与MobileNetV3模型,得到改进后的三种神经网络基学习模型,并在生成的训练子集上进行训练;最后,利用加权平均的思想将这些模型进行集成。在葡萄叶片病害数据集上进行的实验表明,该集成模型的识别准确率达到了99.38%,因而是一种比较有效的葡萄叶片病害识别方法。 展开更多
关键词 葡萄叶片病害识别 卷积神经网络 集成学习 BAGGING算法 图像识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部