The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affect...The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.展开更多
Nanocomposites of zinc/bentonite clay were synthesized for use as an antibacterial material by a quick and simple alkaline ion exchange method. The synthesis of zinc doped bentonite nanocomposite was accomplished by p...Nanocomposites of zinc/bentonite clay were synthesized for use as an antibacterial material by a quick and simple alkaline ion exchange method. The synthesis of zinc doped bentonite nanocomposite was accomplished by placing bentonite in a melting bath of ZnSO4 for 10, 20, 40, 60 and 90 rain. The complexes were characterized by XRD, SEM and DRS. XRD analyses and SEM observations confirmed the diffusion of zinc to the clay surfaces. Antibacterial activity tests against Escherichia coli showed that bentonite did not present any antibacterial properties, but after alkaline ion exchange treatment, inhibition was noted. The highest antibacterial activity was observed with ZnO/bentonite composite alkaline ion exchange for 60 and 90 rain. Interestingly, the leaching test indicated that ZnO/bentonite did not present any risk for drinking water treatment.展开更多
基金Project(DY135-B2-15) supported by the China Ocean Mineral Resource R&D AssociationProject(2015ZX07205-003) supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026) supported by the National Natural Science Foundation of China
文摘The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.
文摘Nanocomposites of zinc/bentonite clay were synthesized for use as an antibacterial material by a quick and simple alkaline ion exchange method. The synthesis of zinc doped bentonite nanocomposite was accomplished by placing bentonite in a melting bath of ZnSO4 for 10, 20, 40, 60 and 90 rain. The complexes were characterized by XRD, SEM and DRS. XRD analyses and SEM observations confirmed the diffusion of zinc to the clay surfaces. Antibacterial activity tests against Escherichia coli showed that bentonite did not present any antibacterial properties, but after alkaline ion exchange treatment, inhibition was noted. The highest antibacterial activity was observed with ZnO/bentonite composite alkaline ion exchange for 60 and 90 rain. Interestingly, the leaching test indicated that ZnO/bentonite did not present any risk for drinking water treatment.