期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于端到端深度学习的数字语音源录音设备确认取证
1
作者 邹领 朱磊 +1 位作者 邓阳君 张红燕 《计算机科学》 北大核心 2025年第S1期958-964,共7页
音频编辑软件以及深度伪造(DeepFake)技术使得对数字音频和语音的篡改及伪造变得容易,因此,在将一段音频或语音录音作为有效的司法证据前,必须对其真实性和完整性进行鉴定。面向数字语音的录音设备源确认(SRDV)是数字音频设备源取证的... 音频编辑软件以及深度伪造(DeepFake)技术使得对数字音频和语音的篡改及伪造变得容易,因此,在将一段音频或语音录音作为有效的司法证据前,必须对其真实性和完整性进行鉴定。面向数字语音的录音设备源确认(SRDV)是数字音频设备源取证的关键问题之一,具体是指:给定一段数字语音录音和一个录音设备,判断该录音是否是由该设备所录制。近年来,深度学习技术在许多领域得到了广泛应用并取得了很好的效果,但目前与录音设备源识别相关的工作主要集中于录音设备源辨认(SRDI)中,尚未有基于深度学习的SRDV方法的报道。文中提出了一种新颖的基于端到端(E2E)深度学习的录音设备源取证方法,从语音录音中提取FBank特征来表征设备指纹并作为深度神经网络结构的输入,深度神经网络结构采用一个调整参数的VGG-M网络,并通过自注意力池化(SAP)层和全连接层来提取录音设备特征向量(RDE)。整个网络基于通用端到端(GE2E)损失函数来进行训练。采用等错误率(EER)作为性能评估准则,在划分好的开发集和测试集上进行录音设备源确认实验,实验结果表明所提方法显著提升了录音设备源确认的性能。 展开更多
关键词 数字语音取证 获取设备取证 录音设备源确认 录音设备特征向量 端到端深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部