期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向高分辨SAR成像的正则参数自学习
1
作者 刘伟 焦卫东 +1 位作者 廖仙华 杨磊 《信号处理》 CSCD 北大核心 2022年第8期1737-1748,共12页
针对基于正则优化的高分辨SAR成像惩罚项系数自学习难点问题,本文提出一种贝叶斯边缘估计(Marginal Estimation Bayes,MEB)算法,以实现目标多先验模型的高精度特征拟合,提升成像特征恢复精度。该方法根据观测数据进行交替方向乘子法(Alt... 针对基于正则优化的高分辨SAR成像惩罚项系数自学习难点问题,本文提出一种贝叶斯边缘估计(Marginal Estimation Bayes,MEB)算法,以实现目标多先验模型的高精度特征拟合,提升成像特征恢复精度。该方法根据观测数据进行交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)凸优化框架建模,并利用贝叶斯理论推导参数的最大边缘似然分布,同时采用Moreau-Yoshida未经调整的朗之万算法(Moreau-Yoshida Unadjusted Langevin Algorithm,MYULA)实现后验采样求解,引入梯度投影法解决正则参数自学习问题,最后利用自学习参数进行优化成像。该算法可实现多正则项优化多参数协同自适应参数估计。另外,针对可能存在的目标先验非可微问题,本文利用近端算法中的次梯度优化,通过邻近算子来求解非可微先验的次梯度,可实现非可微正则函数的参数自学习。实验部分利用点目标仿真与美国Sandia实验室公布的实际数据。实验结果表明,相对于遍历最优结果,本文所提方法得到的结果与最优值的误差均在15%之内。另外,通过相变热力图(Phase Transition Diagram,PTD)定量验证了算法的有效性,同时将本文算法与其他自学习算法进行对比,验证了算法的实用性。 展开更多
关键词 合成孔径雷达成像 梯度投影法 正则项 贝叶斯边缘估计 莫罗吉田未经调整的朗之万算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部