期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于SRCKF算法的锂离子电池荷电状态估计
1
作者 肜瑶 张洋洋 吕运朋 《电池》 北大核心 2025年第2期273-278,共6页
为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通... 为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通过引入正交三角(QR)分解,误差协方差矩阵在计算过程中以平方根的形式传播,从而确保矩阵的正定和对称。与CKF算法对比发现,SRCKF算法的估计误差为2.0534×10-4 V,说明可以提高SOC估计的精度。 展开更多
关键词 磷酸铁锂锂离子 双极化模型 平方根容积卡尔曼滤波(SRCKF)算法 状态(soc)估计
在线阅读 下载PDF
基于GWO-LSTM-TCN混合模型的锂电池荷电状态估计研究 被引量:2
2
作者 李豪磊 赵升 +2 位作者 谢喜龙 张正江 李泉坊 《电源技术》 CAS 北大核心 2024年第11期2195-2200,共6页
针对锂电池荷电状态(SOC)具有非线性、时变特性而无法直接测量的问题,提出了一种基于灰狼优化算法混合模型的锂电池SOC估计方法,利用长短期记忆网络(LSTM)和时序卷积网络(TCN)挖掘SOC特征信息,构建锂电池电压、电流与SOC的映射网络模型... 针对锂电池荷电状态(SOC)具有非线性、时变特性而无法直接测量的问题,提出了一种基于灰狼优化算法混合模型的锂电池SOC估计方法,利用长短期记忆网络(LSTM)和时序卷积网络(TCN)挖掘SOC特征信息,构建锂电池电压、电流与SOC的映射网络模型,引入灰狼优化算法(GWO)确定网络模型最佳超参数,采用马里兰大学公开的INR 18650-20R数据集对SOC混合模型进行实验验证。结果表明,GWO-LSTM-TCN网络模型对锂电池荷电状态的估计精度相较于GWO-LSTM网络以及GWO-TCN网络能更好拟合锂电池电压、电流与SOC之间的非线性映射关系,具有较好的模型准确性和泛化能力。 展开更多
关键词 荷电状态soc估计 GWO-LSTM-TCN 混合模型
在线阅读 下载PDF
基于ASIT-UKF算法的锂电池荷电状态估计 被引量:2
3
作者 陈阳舟 伊磊 《北京工业大学学报》 CAS CSCD 北大核心 2024年第6期683-692,共10页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman f... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。 展开更多
关键词 状态(state of charge soc)估计 球形不敏变换 Sage-Husa滤波 无迹卡尔曼滤波(unscented Kalman filter UKF)算法 均方根误差
在线阅读 下载PDF
温度自适应SMO算法估计锂离子电池的SOC
4
作者 吕高 樊郭宇 +2 位作者 张嘉蕾 杜君莉 史书怀 《电池》 CAS 北大核心 2024年第3期334-339,共6页
现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式... 现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式,通过台风(Typhoon)系统进行半实物实验分析。温度自适应SMO算法在低温或常温工况下的平均误差较传统SMO算法降低0.3~0.5个百分点,直接通过拟合式所快速估计的SOC较温度自适应SMO算法平均误差在2%左右,常温25℃工况下误差低于1%,能够实现较高的估计精准度,为快速估计SOC提供了较好的算法参考。 展开更多
关键词 状态(soc)估计 滑模观测(SMO) 温度影响 锂离子 半实物实验分析
在线阅读 下载PDF
基于分数阶模型的锂离子电池SOC估计 被引量:1
5
作者 郭宝贵 马潇男 《电池》 CAS 北大核心 2024年第5期634-639,共6页
准确的荷电状态(SOC)估算,有助于延长电池寿命并确保电池安全。由于电荷转移阻抗和扩散阻抗对应的时间常数不同,电池模型参数也不同。研究基于分数阶模型自适应遗忘因子递推最小二乘法(FOM-AFFRLS)的参数辨识,以实时捕捉遗忘因子和参数... 准确的荷电状态(SOC)估算,有助于延长电池寿命并确保电池安全。由于电荷转移阻抗和扩散阻抗对应的时间常数不同,电池模型参数也不同。研究基于分数阶模型自适应遗忘因子递推最小二乘法(FOM-AFFRLS)的参数辨识,以实时捕捉遗忘因子和参数的变化,并采用扩展卡尔曼滤波估计SOC。FOM-AFFRLS算法的误差为1%,小于分数阶基于遗忘因子的递推最小二乘法(FOM-FFRLS)、整数阶自适应遗忘因子递推最小二乘法(IOM-AFFRLS)和整数阶遗忘因子递推最小二乘法(IOM-FFRLS)等,验证所提方法在动态工况下正常工作时,具有较高的SOC估计精度。该方法能克服错误初始值引起的发散,SOC初值为0.7时,平均绝对误差小于0.068,鲁棒性较好。 展开更多
关键词 锂离子 参数辨识 自适应遗忘因子递推最小二乘(AFFRLS)法 状态(soc)估计
在线阅读 下载PDF
基于自适应扩展卡尔曼滤波法的储能电池荷电状态估计研究 被引量:11
6
作者 裴超 王大磊 +3 位作者 冉孟兵 王曼 代昀杨 蒋凯 《智慧电力》 北大核心 2019年第5期84-89,96,共7页
荷电状态估计是储能电池管理的一项重要指标。目前工程上广泛使用的安时积分法虽然简单,但是存在诸多局限性。为了提高电量估算的精度和速度,同时考虑实际应用需求,针对储能电池开展了基于自适应扩展卡尔曼滤波(AEKF)法的荷电状态估计研... 荷电状态估计是储能电池管理的一项重要指标。目前工程上广泛使用的安时积分法虽然简单,但是存在诸多局限性。为了提高电量估算的精度和速度,同时考虑实际应用需求,针对储能电池开展了基于自适应扩展卡尔曼滤波(AEKF)法的荷电状态估计研究,以二阶Thevenin等效电路模型为基础,列写状态空间表达式,建立滤波器模型并根据实际情况对算法进行适当改进。仿真实验通过对比扩展卡尔曼滤波(EKF)法和AEKF方法,证实了AEKF方法的优越性。 展开更多
关键词 状态(soc)估计 储能 自适应扩展卡尔曼滤波法(AEKF) 状态空间表达式
在线阅读 下载PDF
基于GWO-LSTM与LSSVM的锂离子电池荷电状态与容量联合估计 被引量:3
7
作者 王桥 魏孟 +2 位作者 叶敏 廉高棨 麻玉川 《汽车安全与节能学报》 CAS CSCD 北大核心 2022年第3期571-579,共9页
为了提高锂离子电池老化后的荷电状态(SOC)估计精度,通过分析锂离子电池的充电与放电特性,提出一种基于长短时记忆(LSTM)网络和最小二乘支持向量机(LSSVM)的荷电状态与容量联合估计模型。根据锂离子电池的充放电特性,提出片段电压的充... 为了提高锂离子电池老化后的荷电状态(SOC)估计精度,通过分析锂离子电池的充电与放电特性,提出一种基于长短时记忆(LSTM)网络和最小二乘支持向量机(LSSVM)的荷电状态与容量联合估计模型。根据锂离子电池的充放电特性,提出片段电压的充电时间作为健康因子;基于最小二乘支持向量机建立了锂离子电池的容量估计模块,容量估计结果通过记忆门控被记录下来;基于灰狼算法优化的长短时记忆网络(GWO-LSTM)框架建立了锂离子电池的荷电状态与容量的联合估计模型。结果表明:与粒子群算法优化的反向传播神经网络(BPNN-PSO)和传统长短时记忆网络模型对比,所提方法的容量估计精度提高了43%以上,SOC估计表现出更好的鲁棒性。 展开更多
关键词 锂离子 状态(soc)估计 容量估计 长短时记忆网络(LSTM) 灰狼优化(GWO) 最小二乘支持向量机(LSSVM)
在线阅读 下载PDF
基于一致性估计的车用动力蓄电池组SOC修正法 被引量:2
8
作者 王佳元 孙泽昌 +1 位作者 魏学哲 戴海峰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期711-716,共6页
目前车用动力蓄电池组荷电状态(SOC)的估计方法在应用时都将电池组看作一个整体,而忽略了组中单体电池之间的差异对整组SOC估计的影响.提出一种基于单体电池一致性估计的车用动力蓄电池组SOC修正方法.此方法采用了自适应神经模糊推理系... 目前车用动力蓄电池组荷电状态(SOC)的估计方法在应用时都将电池组看作一个整体,而忽略了组中单体电池之间的差异对整组SOC估计的影响.提出一种基于单体电池一致性估计的车用动力蓄电池组SOC修正方法.此方法采用了自适应神经模糊推理系统的基本原理,通过对模糊逻辑规则库的离线自适应训练,构建了可用于车载电池管理系统(BMS)的SOC一致性模糊推理系统.通过仿真或者试验验证表明,该方法能够在电池组SOC一致性发生变化的情况下,作出较为准确的判断并结合传统的整组SOC估计结果进行修正.说明通过该方法建立的模糊模型经过神经网络自适应学习后具有较好的泛化能力. 展开更多
关键词 状态(soc)估计 池一致性 模糊神经网络 动力池组(TBP)
在线阅读 下载PDF
基于AEKF的锌镍单液流电池SOC估计 被引量:2
9
作者 宋绍剑 魏黄娇 宋春宁 《电池》 CAS CSCD 北大核心 2020年第1期50-53,共4页
提出一种基于自适应扩展卡尔曼滤波(AEKF)算法的锌镍单液流电池荷电状态(SOC)估计方法。建立二阶等效RC电路模型,并提出AEKF算法,对锌镍单液流电池进行参数辨识,再在不同的SOC初值情况下以14 A的电流进行恒流脉冲充放电实验,进一步验证A... 提出一种基于自适应扩展卡尔曼滤波(AEKF)算法的锌镍单液流电池荷电状态(SOC)估计方法。建立二阶等效RC电路模型,并提出AEKF算法,对锌镍单液流电池进行参数辨识,再在不同的SOC初值情况下以14 A的电流进行恒流脉冲充放电实验,进一步验证AEKF算法。提出的AEKF算法能准确地估计SOC,估计误差小于2%,能在SOC初始值错误的情况下进行快速修正,具有较强的适应性。 展开更多
关键词 锌镍单液流 状态(soc)估计 自适应扩展卡尔曼滤波(AEKF)
在线阅读 下载PDF
基于随机森林的锂离子电池荷电状态估算 被引量:9
10
作者 韦振汉 宋树祥 夏海英 《广西师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期27-33,共7页
荷电状态(state-of-charge,SOC)是锂离子电池预测和健康管理非常重要的一部分。锂离子电池的SOC无法直接测量,因此本文提出了基于随机森林回归算法的锂离子电池SOC估计的方法。首先构建随机森林回归模型,使用电池电流、电池电压、电池... 荷电状态(state-of-charge,SOC)是锂离子电池预测和健康管理非常重要的一部分。锂离子电池的SOC无法直接测量,因此本文提出了基于随机森林回归算法的锂离子电池SOC估计的方法。首先构建随机森林回归模型,使用电池电流、电池电压、电池温度作为模型的训练输入,相对应的SOC作为模型的训练输出;然后使用随机森林算法进行模型训练;最后将训练模型应用于电池SOC估计。实验结果表明,随机森林回归算法对锂离子电池荷电状态的预测最大估算误差为0.02,均方根误差为0.003 204,该方法能有效地估算锂离子电池SOC并且有很高的估计精度。该模型研究为未来电池荷电状态估算系统的模型构建提供了参考。 展开更多
关键词 锂离子 随机森林回归 状态(soc)估计
在线阅读 下载PDF
基于FFRLS+EKF的特定工况下铅炭电池SOC估计 被引量:2
11
作者 王鲁 王峰 +1 位作者 徐利菊 李玮 《电池》 CAS 北大核心 2023年第5期504-508,共5页
提出一种快速、高精度估计铅炭电池荷电状态(SOC)的方法,并在特定工况下进行验证。通过建立等效电路模型,应用MATLAB仿真出SOC曲线,对比遗忘因子递推最小二乘(FFRLS)法+扩展卡尔曼滤波(EKF)估计的SOC与实际SOC曲线的误差,验证算法的精... 提出一种快速、高精度估计铅炭电池荷电状态(SOC)的方法,并在特定工况下进行验证。通过建立等效电路模型,应用MATLAB仿真出SOC曲线,对比遗忘因子递推最小二乘(FFRLS)法+扩展卡尔曼滤波(EKF)估计的SOC与实际SOC曲线的误差,验证算法的精确性和可靠性。在恒流间歇放电特定工况下,使用所提算法估计铅炭电池的SOC,与实际SOC的最大误差不超过0.9%。 展开更多
关键词 铅炭 状态(soc)估计 遗忘因子递推最小二乘(FFRLS)法 扩展卡尔曼滤波(EKF) 特定工况
在线阅读 下载PDF
电动汽车动力电池模型及SOC预测方法 被引量:23
12
作者 邵海岳 钟志华 +2 位作者 何莉萍 钟勇 陈宗璋 《电源技术》 CAS CSCD 北大核心 2004年第10期637-640,共4页
简要介绍了铅酸蓄电池的电化学过程,提出了一种考虑温度影响的动态R-Q电池模型,并在此基础上建立了一种新的基于状态空间的SOC递推算法。对电池的两种放电过程仿真计算表明,该算法精确可靠,计算速度快,易于实现,适合电动汽车上使用。基... 简要介绍了铅酸蓄电池的电化学过程,提出了一种考虑温度影响的动态R-Q电池模型,并在此基础上建立了一种新的基于状态空间的SOC递推算法。对电池的两种放电过程仿真计算表明,该算法精确可靠,计算速度快,易于实现,适合电动汽车上使用。基于状态空间的SOC预测方法通过电池稳态开路电压来计算SOC,在电池充放电循环过程中没有误差累积,同样可用于其它类型的动力电池。 展开更多
关键词 动汽车(EV) 状态空间 模型 状态(soc)估计
在线阅读 下载PDF
基于事件驱动的液流电池控制系统实现方式
13
作者 练润哲 董树锋 《电力工程技术》 北大核心 2024年第1期32-40,共9页
液流电池具有充放电循环次数大、容量高及寿命长等优点,是长时大规模储能的理想选择,但是其复杂的结构对电池控制系统的要求较高,传统开发方式难以满足其多样的控制需求,因此提出精准度更高、实时性更好的基于事件驱动技术的液流电池控... 液流电池具有充放电循环次数大、容量高及寿命长等优点,是长时大规模储能的理想选择,但是其复杂的结构对电池控制系统的要求较高,传统开发方式难以满足其多样的控制需求,因此提出精准度更高、实时性更好的基于事件驱动技术的液流电池控制系统开发方法。首先针对液流电池稳定性需求高、内部损耗大等问题,提出了主/辅助电堆协同架构,并对该架构系统进行建模分析;然后基于事件驱动技术对控制系统进行模块化设计,包括柔性充放电控制、辅助电堆参与的黑启动控制、基于卡尔曼滤波的电池荷电状态(state of charge,SOC)估计等;最后搭建半实物仿真平台,对所提架构和策略进行验证,证明了该架构和策略能提高系统的能量转换效率和稳定性。 展开更多
关键词 液流 事件驱动 储能 柔性充放控制 卡尔曼滤波 状态(soc)估计 黑启动
在线阅读 下载PDF
基于STHF算法估计锂离子电池的SOC
14
作者 王慧 刘小斐 张巍 《电池》 2025年第4期784-789,共6页
为提高锂离子电池荷电状态(SOC)估计的准确性,改善H无穷滤波(HF)算法在跟踪状态突然变化时的性能,结合HF算法和强跟踪滤波(ST),提出STHF组合算法。该算法在HF算法的基础上引入渐消因子,增加估计残差序列中的相关信息,为参数的变化提供... 为提高锂离子电池荷电状态(SOC)估计的准确性,改善H无穷滤波(HF)算法在跟踪状态突然变化时的性能,结合HF算法和强跟踪滤波(ST),提出STHF组合算法。该算法在HF算法的基础上引入渐消因子,增加估计残差序列中的相关信息,为参数的变化提供高鲁棒性。在动态应力测试(DST)、间歇放电条件下,STHF算法估计SOC的误差分别为-2.1%~-1.8%和±0.2%,均优于HF算法,表明了该算法的优越性。 展开更多
关键词 锂离子 H无穷滤波(HF)算法 强跟踪滤波(ST) 状态(soc)估计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部