期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
阿糖胞苷代谢关键酶活性与大剂量阿糖胞苷治疗时药物血浓度关系研究 被引量:10
1
作者 杨蓉 谢晓恬 +4 位作者 蒋莎义 石苇 张虹 周晓迅 卢双龙 《中国肿瘤临床》 CAS CSCD 北大核心 2010年第13期742-744,748,共4页
目的:通过检测急性白血病(AL)及非霍奇金淋巴瘤(NHL)患儿骨髓单个核细胞内阿糖胞苷(Ara—C)代谢关键酶-脱氧胞苷激酶(DCK)、胞苷脱氨酶(CDA)活性及静滴大剂量阿糖胞苷(HD—AraC)后2h外周血中Ara—C、阿糖尿苷(Ara—U)的... 目的:通过检测急性白血病(AL)及非霍奇金淋巴瘤(NHL)患儿骨髓单个核细胞内阿糖胞苷(Ara—C)代谢关键酶-脱氧胞苷激酶(DCK)、胞苷脱氨酶(CDA)活性及静滴大剂量阿糖胞苷(HD—AraC)后2h外周血中Ara—C、阿糖尿苷(Ara—U)的浓度,分析DCK、CDA活性与外周血中Ara—C、Ara—U血浆峰浓度的关系。探索Ara—C的体内代谢特征,以及Ara—C代谢关键酶活性表达对儿童恶性血液肿瘤接受HD—AraC治疗时药物血浓度的影响。方法:采用同位素。H—Cytidine做为放射底物检测24例患儿骨髓单个核细胞内DCK、CDA酶活性.同时采用高效液相色谱法(HPLC)和Ara—C、Ara—U标准品测定静滴HD—AraC2h后血浆Ara—C、Ara—U的峰浓度,统计分析DCK、CDA酶活性表达强弱与外周血Ara—C、Ara—U峰浓度的相关性。结果:CDA酶活性表达强弱明显影响Ara—C、Ara—U的血浆峰浓度(P〈0.05):CDA酶活性高的患儿,Ara—U血浆峰浓度高,Ara—C血浆峰浓度低;CDA酶活性低的患几,Ara—U血浆峰浓度低,Ara—C血浆峰浓度相对高。但是,DCK酶活性与Ara—C、Ara—U的血浆峰浓度未见显著性相关(P〉O.05)。结论:HD—AraC是治疗儿童难治型恶性血液肿瘤的有效疗法,但是CDA酶活性表达强弱将显影响患儿个体所能达到Ara—C、Ara—U的血浆峰浓度,进而对Ara—C疗效和骨髓抑制等治疗反应产生影响。因此,检测CDA酶活性表达,有可能为临床适当调整药物剂量,开展个体化治疗,提供较为可靠的参考依据。 展开更多
关键词 急性白 儿童 脱氧胞苷激酶 胞苷脱氨酶 药物血浓度
在线阅读 下载PDF
Predication of plasma concentration of remifentanil based on Elman neural network 被引量:1
2
作者 汤井田 曹扬 +1 位作者 肖嘉莹 郭曲练 《Journal of Central South University》 SCIE EI CAS 2013年第11期3187-3192,共6页
Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacoki... Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacokinetics parameters,nonlinear mixed effects model(NONMEM),has the abuses of tedious work and plenty of man-made jamming factors.The Elman feedback neural network was built.The relationships between the patients’plasma concentration of remifentanil and time,patient’age,gender,lean body mass,height,body surface area,sampling time,total dose,and injection rate through network training were obtained to predict the plasma concentration of remifentanil,and after that,it was compared with the results of NONMEM algorithm.In conclusion,the average error of Elman network is 6.34%,while that of NONMEM is 18.99%.The absolute average error of Elman network is 27.07%,while that of NONMEM is 38.09%.The experimental results indicate that Elman neural network could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error.For the characteristics of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetic and pharmacodynamics. 展开更多
关键词 Elman neural network REMIFENTANIL plasma concentration predication model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部