期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可见-近红外光谱变量选择的荒漠土壤全磷含量估测研究 被引量:17
1
作者 杨爱霞 丁建丽 +1 位作者 李艳红 邓凯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第3期691-696,共6页
以新疆艾比湖湿地保护区采集的300个荒漠土壤样品为研究对象,利用ASD Field Spec○R3HR光谱仪获取的土壤可见-近红外光谱数据以及化学分析获取的土壤全磷数据为数据源,将原始光谱数据经过卷积平滑、标准正态变量变换以及一阶微分预处理... 以新疆艾比湖湿地保护区采集的300个荒漠土壤样品为研究对象,利用ASD Field Spec○R3HR光谱仪获取的土壤可见-近红外光谱数据以及化学分析获取的土壤全磷数据为数据源,将原始光谱数据经过卷积平滑、标准正态变量变换以及一阶微分预处理后,采用蚁群-遗传结合区间偏最小二乘法提取荒漠土壤全磷含量特征波长,构建土壤全磷含量偏最小二乘回归预测模型;并与全谱偏最小二乘、蚁群-区间偏最小二乘、遗传-偏最小二乘模型进行比较。结果表明:经蚁群-区间偏最小二乘法筛选后,荒漠土壤全磷特征波段为500~700,1 101~1 300,1 501~1 700,1 901~2 100nm;进一步采用遗传-区间偏最小二乘法进行变量选择,得到共线性最小的13个有效波长,分别为:1 621,546,1 259,573,1 572,1 527,564,1 186,1 988,1 541,2 024,1 118和1 191nm。建模方法比较显示,采用蚁群-遗传结合区间偏最小二乘法选择的特征变量,建立的模型精度最高,其次是遗传算法、蚁群算法和全光谱。蚁群-遗传结合区间偏最小二乘法建立的土壤全磷含量的模型,效验证均方根误差RMSECV以及预测集均方根误差RMSEP分别为0.122和0.108mg·g-1,效验证相关系数Rc以及预测集的相关系数Rp分别为0.535 7,0.555 9。因此,经过卷积平滑、标准正态变量变换以及一阶微分预处理,并利用蚁群-遗传结合区间偏最小二乘法建立的模型不仅简单,而且具有较高的预测精度和较好的稳健性,可以估算荒漠土壤全磷含量。 展开更多
关键词 光谱学 近红外光谱 蚁群-遗传区间偏最小二乘法 荒漠土壤全磷
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部