期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SPRRD-ShuffleNetV2的GF-2图像茶种植区快速提取方法
1
作者
张世超
王常颖
+1 位作者
李劲华
张志梅
《遥感信息》
CSCD
北大核心
2022年第4期80-86,共7页
由于茶树在光谱特征上与其他农作物种植区具有相似性,导致茶种植区的遥感识别具有比较大的难度。为了在保证提取精度能达到基本实际需求的前提下,有效提高高分辨率遥感图像茶区提取速度,提出了一种基于SPRRD-ShuffleNetV2的遥感图像茶...
由于茶树在光谱特征上与其他农作物种植区具有相似性,导致茶种植区的遥感识别具有比较大的难度。为了在保证提取精度能达到基本实际需求的前提下,有效提高高分辨率遥感图像茶区提取速度,提出了一种基于SPRRD-ShuffleNetV2的遥感图像茶种植区快速提取方法。首先,以去除了最后1×1卷积层、全局池化层和全连接层的ShuffleNetV2网络作为编码器,并增加解码器以实现像素级分类;然后,在几乎不增加参数量、不影响推理速度的前提下,在编码器部分增加增强条纹池化模块和混合池化模块,用于捕获全局和局部依赖关系,在解码器部分增加残差优化块,用于优化输出特征。使用高分二号图像作为实验数据源。结果表明,该方法能够满足基本提取精度需求,并有效提高了提取速度。
展开更多
关键词
GF-2图像
茶种植区提取
SPRRD-ShuffleNetV2
深度学习
在线阅读
下载PDF
职称材料
题名
基于SPRRD-ShuffleNetV2的GF-2图像茶种植区快速提取方法
1
作者
张世超
王常颖
李劲华
张志梅
机构
青岛大学计算机科学技术学院
出处
《遥感信息》
CSCD
北大核心
2022年第4期80-86,共7页
基金
山东省重点研发计划重大科技创新工程(2019JZZY020101)
国家自然科学基金项目(62172247)
全国统计科学研究项目(2020335)。
文摘
由于茶树在光谱特征上与其他农作物种植区具有相似性,导致茶种植区的遥感识别具有比较大的难度。为了在保证提取精度能达到基本实际需求的前提下,有效提高高分辨率遥感图像茶区提取速度,提出了一种基于SPRRD-ShuffleNetV2的遥感图像茶种植区快速提取方法。首先,以去除了最后1×1卷积层、全局池化层和全连接层的ShuffleNetV2网络作为编码器,并增加解码器以实现像素级分类;然后,在几乎不增加参数量、不影响推理速度的前提下,在编码器部分增加增强条纹池化模块和混合池化模块,用于捕获全局和局部依赖关系,在解码器部分增加残差优化块,用于优化输出特征。使用高分二号图像作为实验数据源。结果表明,该方法能够满足基本提取精度需求,并有效提高了提取速度。
关键词
GF-2图像
茶种植区提取
SPRRD-ShuffleNetV2
深度学习
Keywords
GF-2 image
tea planting area extraction
SPRRD-ShuffleNetV2
deep learning
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SPRRD-ShuffleNetV2的GF-2图像茶种植区快速提取方法
张世超
王常颖
李劲华
张志梅
《遥感信息》
CSCD
北大核心
2022
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部