期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
采用改进Unet网络的茶园导航路径识别方法 被引量:13
1
作者 赵岩 张人天 +2 位作者 董春旺 刘中原 李杨 《农业工程学报》 EI CAS CSCD 北大核心 2022年第19期162-171,共10页
针对目前在茶园垄间导航路径识别存在准确性不高、实时性差和模型解释困难等问题,该研究在Unet模型的基础上进行优化,提出融合Unet和ResNet模型优势的Unet-ResNet34模型,并以该模型所提取的导航路径为基础,生成路径中点,通过多段三次B... 针对目前在茶园垄间导航路径识别存在准确性不高、实时性差和模型解释困难等问题,该研究在Unet模型的基础上进行优化,提出融合Unet和ResNet模型优势的Unet-ResNet34模型,并以该模型所提取的导航路径为基础,生成路径中点,通过多段三次B样条曲线法拟合中点生成茶园垄间导航线。该研究在数据增强后的茶园垄间道路训练集中完成模型训练,将训练完成的模型在验证集进行导航路径识别,根据梯度加权类激活映射法解释模型识别过程,可视化对比不同模型识别结果。Unet-ResNet34模型在不同光照和杂草条件下导航路径分割精度指标平均交并比为91.89%,能够实现茶园垄间道路像素级分割。模型处理RGB图像的推理速度为36.8帧/s,满足导航路径分割的实时性需求。经过导航线偏差试验可知,平均像素偏差为8.2像素,平均距离偏差为0.022 m,已知茶园垄间道路平均宽度为1 m,道路平均距离偏差占比2.2%。茶园履带车行驶速度在0~1 m/s之间,单幅茶垄图像平均处理时间为0.179 s。研究结果能够为茶园视觉导航设备提供技术和理论基础。 展开更多
关键词 导航 深度学习 茶园可视化 路径识别 语义分割 样条曲线拟合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部