期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度特征拼接的小样本茶叶病害分类
被引量:
2
1
作者
张艳
王林茂
+2 位作者
程志友
章杨凡
储著增
《安徽大学学报(自然科学版)》
CAS
北大核心
2022年第5期58-63,共6页
传统的茶叶病害分类是一项耗时耗力的工作.针对该问题,提出一种基于多尺度特征拼接的网络模型,用于小样本茶叶病害分类.通过多尺度注意力模块提取茶叶叶片的显著性特征,进而得到显著性图像.对显著性图像与原始图像进行通道特征拼接,使...
传统的茶叶病害分类是一项耗时耗力的工作.针对该问题,提出一种基于多尺度特征拼接的网络模型,用于小样本茶叶病害分类.通过多尺度注意力模块提取茶叶叶片的显著性特征,进而得到显著性图像.对显著性图像与原始图像进行通道特征拼接,使拼接后的图像既包含全局特征又包含局部特征.融合多个不同卷积层输出的特征,使特征图包含空间和语义信息.分类实验结果表明:用可分离卷积代替常规卷积后,该文模型参量总数小于关系网络模型参量总数的1/2,提高了分类效率;相对于其他5种模型,该文模型分类准确率最高.
展开更多
关键词
茶叶病害分类
多尺度注意力模块
显著性区域
可分离卷积
在线阅读
下载PDF
职称材料
题名
基于多尺度特征拼接的小样本茶叶病害分类
被引量:
2
1
作者
张艳
王林茂
程志友
章杨凡
储著增
机构
安徽大学电子信息工程学院
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2022年第5期58-63,共6页
基金
国家重点研发计划重点专项(2018YFC0807302)
国家自然科学基金资助项目(61772032)
+1 种基金
基本科研业务费项目(2018JB08)
安徽省高等学校自然科学研究项目(KJ09A0027)。
文摘
传统的茶叶病害分类是一项耗时耗力的工作.针对该问题,提出一种基于多尺度特征拼接的网络模型,用于小样本茶叶病害分类.通过多尺度注意力模块提取茶叶叶片的显著性特征,进而得到显著性图像.对显著性图像与原始图像进行通道特征拼接,使拼接后的图像既包含全局特征又包含局部特征.融合多个不同卷积层输出的特征,使特征图包含空间和语义信息.分类实验结果表明:用可分离卷积代替常规卷积后,该文模型参量总数小于关系网络模型参量总数的1/2,提高了分类效率;相对于其他5种模型,该文模型分类准确率最高.
关键词
茶叶病害分类
多尺度注意力模块
显著性区域
可分离卷积
Keywords
tea disease classification
multi-scale attention module
salient regions
separable convolution
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度特征拼接的小样本茶叶病害分类
张艳
王林茂
程志友
章杨凡
储著增
《安徽大学学报(自然科学版)》
CAS
北大核心
2022
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部