期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5s的苹果表面缺陷检测
1
作者 吕利俊 伊力哈木·亚尔买买提 《山东农业科学》 北大核心 2025年第6期149-157,共9页
针对苹果表面缺陷检测中存在因苹果重叠或被遮挡造成的检测精度低以及误检漏检等问题,本研究提出一种改进YOLOv5s算法的苹果表面缺陷检测方法。首先,在YOLOv5s模型的Backbone部分加入卷积注意力模块(CBAM),增强检测模型对图像重要区域... 针对苹果表面缺陷检测中存在因苹果重叠或被遮挡造成的检测精度低以及误检漏检等问题,本研究提出一种改进YOLOv5s算法的苹果表面缺陷检测方法。首先,在YOLOv5s模型的Backbone部分加入卷积注意力模块(CBAM),增强检测模型对图像重要区域信息的关注程度,从而提升模型对苹果表面缺陷的检测能力;其次,引入加权双向特征金字塔网络(BiFPN),充分融合不同尺度的苹果表面缺陷特征,以达到减少漏检和误检的目的;最后,使用Soft-NMS算法替代原始网络中的NMS算法,优化冗余边界框筛选条件,进一步降低模型的漏检率。实验结果显示,本研究所提算法的平均精度均值(mAP)达到95.5%,相较于原始算法提升了3.3个百分点,且召回率提升了4.6个百分点,能更好地检测苹果表面缺陷。 展开更多
关键词 苹果表面缺陷检测 YOLOv5s 卷积注意力机制 加权双向特征金字塔网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部