期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进CBAM-DeepLab V3+的苹果种植面积提取 被引量:6
1
作者 常晗 郭树欣 +1 位作者 张海洋 张瑶 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S02期206-213,共8页
为提高苹果种植区域的提取精度,提出了一种基于Sentinel-2和MODIS融合影像的CBAM-DeepLab V3+模型。影响苹果种植区域提取精度的主要因素包括遥感影像的质量以及语义分割模型的性能。从影像质量角度来看,采用基于时序的时空融合算法ESTA... 为提高苹果种植区域的提取精度,提出了一种基于Sentinel-2和MODIS融合影像的CBAM-DeepLab V3+模型。影响苹果种植区域提取精度的主要因素包括遥感影像的质量以及语义分割模型的性能。从影像质量角度来看,采用基于时序的时空融合算法ESTARFM,通过融合Sentinel-2和MODIS的遥感影像数据,实现更高空间分辨率和时间分辨率数据的获取。与此同时,将训练样本从原始的800幅扩充至2400幅,为后续语义分割模型提供更为充足的样本容量。在语义分割模型优化方面,为了进一步提高苹果种植面积的提取精度,以DeepLab V3+网络结构模型为基础,引入基于通道和空间的CBAM注意力机制,进而发展出CBAM-DeepLab V3+模型。与原始DeepLab V3+模型相比,加入CBAM注意力机制的CBAM-DeepLab V3+模型在拟合速度较慢、边缘目标分割不精确、大尺度目标分割内部不一致和存在孔洞等缺陷方面实现了突破,这些改进提高了模型的训练与预测性能。本研究采用原始Sentinel-2影像及时空融合后的影像数据集,结合烟台市牟平区王格庄镇的数据集和观水镇苹果数据集对U-Net、FCN以及DeepLab V3+模型和CBAM-DeepLab V3+模型进行对比,研究发现在苹果种植面积提取方面,CBAM-DeepLab V3+优化模型所取得的MIoU为84.6%,苹果种植面积提取准确率达90.4%。U-Net、FCN和DeepLab V3+模型的MIoU分别为79.2%、75%、81.2%。此外,该模型预测的烟台市牟平区王格庄镇苹果种植面积为3433.33 hm^(2),与烟台市国民经济和社会发展统计公报公布的3666.66 hm^(2)相比,误差为233.33 hm^(2),预测准确率高达93.64%。 展开更多
关键词 苹果种植面积提取 时空融合 卷积神经网络 DeepLab V3+ 语义分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部