期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器视觉的海鲜花螺分类研究
1
作者 陈林涛 陈睿 +2 位作者 蓝莹 梁国健 牟向伟 《水生生物学报》 北大核心 2025年第2期138-145,共8页
针对目前人工分选海鲜花螺劳动强度大、人工成本高的问题,研究提出一种DPO-SVM海鲜花螺公母分类模型。通过灰度共生矩阵分析提取海鲜花螺外壳间隔纹理特征量,采用SVM作为公母分类模型基体,对不同纹理特征量组合进行分类效果对比,得出使... 针对目前人工分选海鲜花螺劳动强度大、人工成本高的问题,研究提出一种DPO-SVM海鲜花螺公母分类模型。通过灰度共生矩阵分析提取海鲜花螺外壳间隔纹理特征量,采用SVM作为公母分类模型基体,对不同纹理特征量组合进行分类效果对比,得出使用能量、熵、对比度3种特征量分类效果最好的结论。针对SVM优化问题,以PSO和WOA算法为基础提出DPO算法对SVM的重要参数c、g进行优化;对DPO-SVM性能进行测试,将测试结果与SVM、PSO-SVM、WOA-SVM测试结果对比。相比于其他3种SVM模型,DPOSVM分类准确率大幅度提升,相比于SVM,分类总准确率由85%上升至100%,上升了15%;DPO算法提高了单种群优化算法的寻优性能,相比于PSO算法,DPO算法将最佳适应度从95.26提升至98.68,提升幅度为3.47%。此外,达到最佳适应度的迭代次数由14次减少至6次,下降57.14%,显著优化了收敛速度。研究结果可为自动分拣装置中海鲜花螺公母分类提供技术参考。 展开更多
关键词 机器视觉 花螺分选 外壳 纹理特征 支持向量机 算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部