在故障发生后的瞬间,电网不同节点上的频率变化率(rate of change of frequency,RoCoF)不尽相同,其分布不仅取决于故障发生的位置,同时也与惯量在整个系统中的分布以及输电线路的拓扑和参数有关。因此,基于系统中心惯量的故障后RoCoF仍...在故障发生后的瞬间,电网不同节点上的频率变化率(rate of change of frequency,RoCoF)不尽相同,其分布不仅取决于故障发生的位置,同时也与惯量在整个系统中的分布以及输电线路的拓扑和参数有关。因此,基于系统中心惯量的故障后RoCoF仍有可能超出安全阈值。为应对这一挑战,提出了考虑惯量-RoCoF空间分布特性的最优机组组合方法。首先,建立惯量-RoCoF空间分布模型,分析故障后电网各节点注入功率与电压相角的变化。然后,构建电网节点RoCoF的安全约束,并将其嵌入到最优机组组合问题中。最后,通过WSCC9节点系统和东南澳电力系统的仿真分析,验证了所提机组组合方案相较于传统方法在维持电网节点RoCoF安全方面的优势。展开更多
文摘在故障发生后的瞬间,电网不同节点上的频率变化率(rate of change of frequency,RoCoF)不尽相同,其分布不仅取决于故障发生的位置,同时也与惯量在整个系统中的分布以及输电线路的拓扑和参数有关。因此,基于系统中心惯量的故障后RoCoF仍有可能超出安全阈值。为应对这一挑战,提出了考虑惯量-RoCoF空间分布特性的最优机组组合方法。首先,建立惯量-RoCoF空间分布模型,分析故障后电网各节点注入功率与电压相角的变化。然后,构建电网节点RoCoF的安全约束,并将其嵌入到最优机组组合问题中。最后,通过WSCC9节点系统和东南澳电力系统的仿真分析,验证了所提机组组合方案相较于传统方法在维持电网节点RoCoF安全方面的优势。