期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测 被引量:3
1
作者 黄南天 孙赫宏 +3 位作者 王圣元 蔡国伟 张良 王日俊 《中国电机工程学报》 北大核心 2025年第4期1424-1435,I0016,共13页
现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网... 现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网络的多公共充电站充电负荷时-空短期预测方法。首先,通过快速最大信息系数构建含有日期、气象以及历史负荷特征的多节点特征集。并通过数据自适应图生成,构建动态相似权时-空图,实现多公共充电站空间连接关系重构。然后,构建图卷积层,差异化生成各节点的空间聚合特征,实现全域充电节点差异化特征增强。同时,通过节点自适应参数学习方法学习不同充电节点的充电模式。最后,通过门控循环单元层挖掘空间聚合特征的时域特征。所提出的公共充电站充电负荷时-空预测方法相应的对称平均绝对百分比误差(symmetric mean absolute percentage error,SMAPE)和平均绝对误差(mean absolute error,MAE)分别为12.95%和31.72 kW。 展开更多
关键词 充电负荷时-空短期预测 多公共充电站 图神经网络 自适应图生成 差异化时空耦合关联 节点自适应参数学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部