In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game mod...To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.展开更多
基金supported in part by the' 100 talents' project of Chinese Academy of Sciences(CAS)by the National Natural Science Foundation of China (NSFC) under the grants 10675109 and 10735040.
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金supported by the National Natural Science Foundation of China(71973001).
文摘To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.