期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
利用计算流体动力学技术进行船体设计优化
1
作者 陶伟 王妍 《国外舰船工程》 2002年第4期6-14,共9页
在计算流体动力学技术(CFD)和试验验证的帮助下,进行了一艘油船船体数字化外形的优化。所选用的具体目标函数是基于用户的需求。在当前的研究中,总阻力和波形要么分开使用,要么线性地结合在一起。在优化方法中,将在种不同的算法... 在计算流体动力学技术(CFD)和试验验证的帮助下,进行了一艘油船船体数字化外形的优化。所选用的具体目标函数是基于用户的需求。在当前的研究中,总阻力和波形要么分开使用,要么线性地结合在一起。在优化方法中,将在种不同的算法和一个计算流体动力学中的流体解算程序相结合,进行测试。由于设计变量数目的锐减,船体外形由一个摄动面来改进。因此,根据所给的不同目标函数和几何限制,自动获取了这艘油船球鼻的几种新的优化外形。在这些优化方案中,制造了其中两种优化模型,在INSEAN拖船帮助下进行了测试,并与原始设计作了对比。试验数据表明,这两种方案的优化方法是成功的。 展开更多
关键词 计算流体动力学 船体设计优化 约束条件 解算程序 船舶设计
在线阅读 下载PDF
结合PDCA循环法的大学生创新训练项目的指导实践
2
作者 张娟 严谨 《武汉船舶职业技术学院学报》 2014年第6期63-66,共4页
创新人才的的培养已成为世界各国高等教育的共同目标。目前,在教育部的支持下,为增强大学生的创新能力和在创新基础上的创业能力,全国大多数高校正在实施大学生创新创业训练项目。项目实施过程中指导教师如何有效管理,进行适当引导和推... 创新人才的的培养已成为世界各国高等教育的共同目标。目前,在教育部的支持下,为增强大学生的创新能力和在创新基础上的创业能力,全国大多数高校正在实施大学生创新创业训练项目。项目实施过程中指导教师如何有效管理,进行适当引导和推动,是大学生创新创业训练项目能否成功进行的关键。结合2013年广东省省级大学生创新创业训练项目--基于ANSYS的"绿色油船"船体结构设计与实体制作(项目编号1056613061)的指导实践探讨了PDCA循环在过程管理中的实际应用,并探讨了大学生创新创业训练项目的根本意义。 展开更多
关键词 大学生创新训练 PDCA循环 船体结构优化设计
在线阅读 下载PDF
A New Rational-based Optimal Design Strategy of Ship Structure Based on Multi-level Analysis and Super-element Modeling Method 被引量:6
3
作者 Li Sun Deyu Wang 《Journal of Marine Science and Application》 2011年第3期272-280,共9页
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ... A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design. 展开更多
关键词 rational-based optimal design method (RBODM) multi-level analysis SUPER-ELEMENT ship module genetic algorithm
在线阅读 下载PDF
Development of Cubic Bezier Curve and Curve-Plane Intersection Method for Parametric Submarine Hull Form Design to Optimize Hull Resistance Using CFD
4
作者 Deddy Chrismianto Ahmad Fauzan Zakki +1 位作者 Berlian Arswendo Dong Joon Kim 《Journal of Marine Science and Application》 CSCD 2015年第4期399-405,共7页
Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create... Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio (L/H). Application program interface (API) scripting is also used to write code in the ANSYS DesignModeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient (Ct). The minimum C, was obtained. The calculated difference in (7, values between the initial submarine and the optimum submarine is around 0.26%, with the C, of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius (rn) and higher L/H than those of the initial submarine shape, while the radius of the tail (r1) is smaller than that of the initial shape. 展开更多
关键词 submarine hull form parametric design cubic Bezier curve curve-plane intersection method hull resistance coefficeint parametric design goal-driven optimization (GDO) computational fluid dynamic (CFD) ANSYS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部