期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度卷积神经网络的舰载机目标检测 被引量:7
1
作者 朱兴动 田少兵 +3 位作者 黄葵 范加利 王正 陈化成 《计算机应用》 CSCD 北大核心 2020年第5期1529-1533,共5页
针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训... 针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训练,利用实验室条件下采集的图片对深度卷积神经网络进行训练并测试。测试实验显示,相对于原始Faster R-CNN检测模型,改进后的模型对遮挡舰载机目标具有良好的检测效果,召回率提高了7个百分点,精确率提高了6个百分点。实验结果表明,所提的改进方法能够自动全面地提取舰载机目标特征,解决了遮挡舰载机目标的检测问题,检测精度和速度均能够满足实际需要,且在不同的光照条件和目标尺度下适应性强,鲁棒性较高。 展开更多
关键词 舰载机目标检测 排斥损失策略 更快的区域卷积神经网络 多尺度训练
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部