期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Yolov5l的航空小目标检测算法 被引量:3
1
作者 戴得恩 朱瑞飞 +2 位作者 陈长征 秦磊 马经宇 《计算机工程与设计》 北大核心 2023年第9期2610-2618,共9页
针对航空图像小目标检测存在的检测精度低、误检与漏检严重等问题,提出一种基于改进Yolov5l的航空小目标检测算法(AS-Yolov5)。在Yolov5的主干特征提取网络中引入空洞卷积,使用Transform的Decode模块,在特征融合网络中新增检测头,FPN+PA... 针对航空图像小目标检测存在的检测精度低、误检与漏检严重等问题,提出一种基于改进Yolov5l的航空小目标检测算法(AS-Yolov5)。在Yolov5的主干特征提取网络中引入空洞卷积,使用Transform的Decode模块,在特征融合网络中新增检测头,FPN+PAN特征融合时设置融合权重,输出端采用SE-Net注意力机制,测试时进行多尺寸输入及测试时间增强(TTA)。算法在visdron2021数据集上进行验证,实验结果表明,AS-Yolov5的均值平均精度@0.5(mAP@0.5)为41.0%,较Yolov5l的28.5%提升12.5%,有效提高Yolov5l难以在远距离、暗环境、密集分布和图像模糊的场景下的小目标检测能力。 展开更多
关键词 航空小目标检测 Yolov5l模型 空洞卷积 SE-Net注意力模块 权重融合 深度学习 目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部