期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
高DN值轴承损伤容限设计准则
1
作者 张萍 《沈阳大学学报》 CAS 2003年第4期53-55,共3页
分析了航空发动机主轴承断裂的机理 ,指出在高速下轴承元件存在较大内应力 ,或轴承材料断裂韧性不足 ,有可能导致轴承元件在出现严重剥落前 ,材料内部的原始缺陷迅速扩展 ,超过临界裂纹尺寸而发生快速断裂。给出了两个高速轴承元件损伤... 分析了航空发动机主轴承断裂的机理 ,指出在高速下轴承元件存在较大内应力 ,或轴承材料断裂韧性不足 ,有可能导致轴承元件在出现严重剥落前 ,材料内部的原始缺陷迅速扩展 ,超过临界裂纹尺寸而发生快速断裂。给出了两个高速轴承元件损伤容限设计准则 ;在实际中 ,应尽量提高轴承材料的高断裂韧性并采用先进探伤技术以加强对主轴承的监控及监测。 展开更多
关键词 航空发动机主轴承 高DN值 断裂力学 设计准则
在线阅读 下载PDF
Sparsity-Assisted Intelligent Condition Monitoring Method for Aero-engine Main Shaft Bearing 被引量:4
2
作者 DING Baoqing WU Jingyao +3 位作者 SUN Chuang WANG Shibin CHEN Xuefeng LI Yinghong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期508-516,共9页
Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted ... Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings. 展开更多
关键词 aero-engine main shaft bearing intelligent condition monitoring feature extraction sparse model variational autoencoders deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部