期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LSTM-ARIMA模型的短期航班飞行轨迹预测 被引量:27
1
作者 石庆研 岳聚财 +1 位作者 韩萍 王文青 《信号处理》 CSCD 北大核心 2019年第12期2000-2009,共10页
高效精确的航班飞行轨迹预测是未来空中交通管理系统的关键技术之一,其旨在提高空中交通的运行能力和可预测性。针对现有的航迹预测方法预测精度和稳定性不足的问题,在已有的历史航迹数据的基础上,构建了新的特征维度,分析了经度、纬度... 高效精确的航班飞行轨迹预测是未来空中交通管理系统的关键技术之一,其旨在提高空中交通的运行能力和可预测性。针对现有的航迹预测方法预测精度和稳定性不足的问题,在已有的历史航迹数据的基础上,构建了新的特征维度,分析了经度、纬度和高度三维数据的统计特性,将长短期记忆网络(Long Short-Term Memory,LSTM)对非线性和非平稳时间序列有较强的逼近能力,而差分自回归移动平均模型(Autoregressive Integrated Moving Average,ARIMA)对线性时间序列的处理能力更优的特点相结合,提出了一种以LSTM为主ARIMA为辅的组合短期航迹预测模型,先利用LSTM作为主预测模型对经纬度和高度进行预测,再利用辅模型ARIMA对高度的线性关系进行建模,最后采用CRITIC方法将LSTM和ARIMA预测的高度值融合处理。实验结果表明,这种组合模型利用了两种模型的优势,提高了航迹预测的准确性。 展开更多
关键词 空中交通管理 航班飞行轨迹预测 长短期记忆网络 ARIMA模型 组合预测模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部