期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多粒度时间注意力RNN的航班客座率预测
被引量:
8
1
作者
邓玉婧
武志昊
林友芳
《计算机工程》
CAS
CSCD
北大核心
2020年第1期294-301,共8页
准确预测航班客座率有利于处理航班机票超售、座位虚耗等问题,然而传统时间序列预测方法只关注航班近期每日客座率的变化特点,无法同时考虑其他因素的影响,预测效果不够理想。针对该问题,提出一种基于多粒度时间注意力机制的循环神经网...
准确预测航班客座率有利于处理航班机票超售、座位虚耗等问题,然而传统时间序列预测方法只关注航班近期每日客座率的变化特点,无法同时考虑其他因素的影响,预测效果不够理想。针对该问题,提出一种基于多粒度时间注意力机制的循环神经网络模型MTA-RNN。通过构建多级注意力机制获取航班客座率在不同时间粒度下的时序相关性,同时考虑航班自身属性及节假日等其他因素,得到未来一段时间内的目标航班客座率。在真实历史航班客座率数据集上的实验结果表明,MTA-RNN模型的预测准确率高于ARIMA模型、LSTM模型和Seq2seq模型。
展开更多
关键词
航班客座率预测
时间序列
预测
循环神经网络
注意力机制
编解码器模型
在线阅读
下载PDF
职称材料
题名
基于多粒度时间注意力RNN的航班客座率预测
被引量:
8
1
作者
邓玉婧
武志昊
林友芳
机构
北京交通大学计算机与信息技术学院交通数据分析与挖掘北京市重点实验室
出处
《计算机工程》
CAS
CSCD
北大核心
2020年第1期294-301,共8页
基金
中央高校基本科研业务费专项资金(2017JBM027)
文摘
准确预测航班客座率有利于处理航班机票超售、座位虚耗等问题,然而传统时间序列预测方法只关注航班近期每日客座率的变化特点,无法同时考虑其他因素的影响,预测效果不够理想。针对该问题,提出一种基于多粒度时间注意力机制的循环神经网络模型MTA-RNN。通过构建多级注意力机制获取航班客座率在不同时间粒度下的时序相关性,同时考虑航班自身属性及节假日等其他因素,得到未来一段时间内的目标航班客座率。在真实历史航班客座率数据集上的实验结果表明,MTA-RNN模型的预测准确率高于ARIMA模型、LSTM模型和Seq2seq模型。
关键词
航班客座率预测
时间序列
预测
循环神经网络
注意力机制
编解码器模型
Keywords
Flight Passenger Load Factors(FPLFs)prediction
time series prediction
Recurrent Neural Network(RNN)
attention mechanism
encoder-decoder model
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多粒度时间注意力RNN的航班客座率预测
邓玉婧
武志昊
林友芳
《计算机工程》
CAS
CSCD
北大核心
2020
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部