期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
正则化约束下的自集成网络模型及其高光谱地物识别研究
1
作者 郭栩辰 范玉刚 姜明凯 《红外技术》 北大核心 2025年第7期823-832,共10页
为了提升高光谱地物识别的精度,提出了一种基于自集成网络(Self-EnsemblingNetwork)的高光谱图像地物识别模型。通过引入正则项约束优化自集成网络,该模型提升了地物识别模型的泛化性能,并构建自集成学习机制,解决有限标记样本下的模型... 为了提升高光谱地物识别的精度,提出了一种基于自集成网络(Self-EnsemblingNetwork)的高光谱图像地物识别模型。通过引入正则项约束优化自集成网络,该模型提升了地物识别模型的泛化性能,并构建自集成学习机制,解决有限标记样本下的模型欠拟合问题,降低高光谱图像识别模型的训练对大量标注样本的依赖。该模型包括一个学生网络和一个教师网络,在网络中加入了带梯度算子的密集连接模块,增强网络对边缘和细粒度特征的感知能力,提升高光谱图像的特征提取性能。在监督损失和无监督损失的共同约束下,学生网络和教师网络互相学习,从而建立了模型的自集成机制,保证了模型的分类精度。为了进一步提升模型的泛化性能,模型优化时引入了L2正则化项,用于约束目标函数的训练和优化,从而克服模型的过拟合问题。将所提方法应用于Pavia University、Salinas和WHU-Hi-LongKou三个高光谱数据集,平均分类精度分别为96.91%、96.73%和98.12%,与多种分类算法进行对比,验证了所提方法在有限标记样本下具有更好的分类精度。 展开更多
关键词 高光谱图像分类 自集成网络 正则化约束 密集连接 深度学习
在线阅读 下载PDF
用于文本分类的均值原型网络 被引量:2
2
作者 线岩团 相艳 +3 位作者 余正涛 文永华 王红斌 张亚飞 《中文信息学报》 CSCD 北大核心 2020年第6期73-80,88,共9页
文本分类是自然语言处理的基本任务之一。该文在原型网络基础上,提出了按时序移动平均方式集成历史原型向量的均值原型网络,并将均值原型网络与循环神经网络相结合,提出了一种新的文本分类模型。该模型利用单层循环神经网络学习文本的... 文本分类是自然语言处理的基本任务之一。该文在原型网络基础上,提出了按时序移动平均方式集成历史原型向量的均值原型网络,并将均值原型网络与循环神经网络相结合,提出了一种新的文本分类模型。该模型利用单层循环神经网络学习文本的向量表示,通过均值原型网络学习文本类别的向量表示,并利用文本向量与原型向量的距离训练模型并预测文本类别。与己有的神经网络文本分类方法相比,模型在训练和预测过程中有效利用了样本间的特征相似关系,并具有网络深度浅、参数少的特点。该方法在多个公开的文本分类数据集上取得了最好的分类准确率。 展开更多
关键词 文本分类 均值原型网络 自集成学习
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
3
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
Combining supervised classifiers with unlabeled data
4
作者 刘雪艳 张雪英 +1 位作者 李凤莲 黄丽霞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1176-1182,共7页
Ensemble learning is a wildly concerned issue.Traditional ensemble techniques are always adopted to seek better results with labeled data and base classifiers.They fail to address the ensemble task where only unlabele... Ensemble learning is a wildly concerned issue.Traditional ensemble techniques are always adopted to seek better results with labeled data and base classifiers.They fail to address the ensemble task where only unlabeled data are available.A label propagation based ensemble(LPBE) approach is proposed to further combine base classification results with unlabeled data.First,a graph is constructed by taking unlabeled data as vertexes,and the weights in the graph are calculated by correntropy function.Average prediction results are gained from base classifiers,and then propagated under a regularization framework and adaptively enhanced over the graph.The proposed approach is further enriched when small labeled data are available.The proposed algorithms are evaluated on several UCI benchmark data sets.Results of simulations show that the proposed algorithms achieve satisfactory performance compared with existing ensemble methods. 展开更多
关键词 correntropy unlabeled data regularization framework ensemble learning
在线阅读 下载PDF
An efficient adapting virtual intermediate instruction set towards optimized dynamic binary translator (DBT) system
5
作者 杨吟冬 管海兵 《Journal of Central South University》 SCIE EI CAS 2012年第11期3118-3128,共11页
A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied... A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied component,DBTs can not only get rid of the dependence of machine(s),but also get better performance.From our systematical study and evaluation,experimental results demonstrate that if V-IIS is well designed,without affecting the other optimizing measures,this could make DBT's performance close to those who do not have intermediate instructions.This study is an important step towards the grand goal of high performance "multi-source" and "multi-target" dynamic binary translation. 展开更多
关键词 binary translation virtual intermediate instruction set dynamic binary translator (DBT)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部