该文在复合高斯海杂波背景下,以逆Gamma分布作为纹理分量的先验分布模型,研究了1阶高斯(First Order Gaussian,FOG)和2阶高斯(Second Order Gaussian,SOG)两类子空间目标的自适应检测问题。采用两步广义似然比(Generalized Likelihood R...该文在复合高斯海杂波背景下,以逆Gamma分布作为纹理分量的先验分布模型,研究了1阶高斯(First Order Gaussian,FOG)和2阶高斯(Second Order Gaussian,SOG)两类子空间目标的自适应检测问题。采用两步广义似然比(Generalized Likelihood Ratio Test,GLRT)推导了检测统计量,并分别采用采样协方差矩阵(Sample Covariance Matrix,SCM)、归一化采样协方差矩阵(Normalized Sample Covariance Matrix,NSCM)和定点估计(Function Point Estimation,FPE)作为协方差矩阵估计值,与GLRT相结合,构造出新的自适应检测器。由于该文检测器在设计阶段考虑了海杂波的先验分布模型,且在检测阶段采用了与工作环境相匹配的模型参数,经性能分析与验证,其在检测性能上优于已有匹配滤波(Adaptive Matched Filter,AMF)和归一化匹配滤波(Adaptive Normalized Matched Filter,ANMF)检测器。展开更多
传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应...传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应贝叶斯分割方法。针对SAR图像中的相干斑噪声模型,引入基于比率概率的相似性测度,用非局部相似像素块指导当前像素点的分割;并且采用变分系数(Coefficient of Variation,CV)方法获取边缘区域图像模板,在边缘区域自适应地调整定义的结构指数以及搜索窗尺寸,从而改善分割过度平滑与结构保持的矛盾;在实验分析中,利用新方法对部分图像进行了分割实验,并与传统方法作了比较。改进方法的分割结果形状更为准确,不但抑制了相干斑噪声,还有效保持了细节特征,具有显著优势。展开更多
文摘该文在复合高斯海杂波背景下,以逆Gamma分布作为纹理分量的先验分布模型,研究了1阶高斯(First Order Gaussian,FOG)和2阶高斯(Second Order Gaussian,SOG)两类子空间目标的自适应检测问题。采用两步广义似然比(Generalized Likelihood Ratio Test,GLRT)推导了检测统计量,并分别采用采样协方差矩阵(Sample Covariance Matrix,SCM)、归一化采样协方差矩阵(Normalized Sample Covariance Matrix,NSCM)和定点估计(Function Point Estimation,FPE)作为协方差矩阵估计值,与GLRT相结合,构造出新的自适应检测器。由于该文检测器在设计阶段考虑了海杂波的先验分布模型,且在检测阶段采用了与工作环境相匹配的模型参数,经性能分析与验证,其在检测性能上优于已有匹配滤波(Adaptive Matched Filter,AMF)和归一化匹配滤波(Adaptive Normalized Matched Filter,ANMF)检测器。
文摘传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应贝叶斯分割方法。针对SAR图像中的相干斑噪声模型,引入基于比率概率的相似性测度,用非局部相似像素块指导当前像素点的分割;并且采用变分系数(Coefficient of Variation,CV)方法获取边缘区域图像模板,在边缘区域自适应地调整定义的结构指数以及搜索窗尺寸,从而改善分割过度平滑与结构保持的矛盾;在实验分析中,利用新方法对部分图像进行了分割实验,并与传统方法作了比较。改进方法的分割结果形状更为准确,不但抑制了相干斑噪声,还有效保持了细节特征,具有显著优势。