期刊文献+
共找到932篇文章
< 1 2 47 >
每页显示 20 50 100
基于RBF网络的四旋翼无人机姿态鲁棒自适应反步滑模控制 被引量:1
1
作者 刘金华 王远 +1 位作者 张智轩 李涛 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期36-42,共7页
针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数... 针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数估计自适应律来代替神经网络权值的调整,并用Lyapunov理论证明系统的稳定性.仿真结果表明:该方法相比反步滑模控制方法,在有干扰的情况下,有更短的调节时间,更好的跟踪精度,验证了本方法具有更好的抗干扰性和鲁棒性. 展开更多
关键词 四旋翼无人机 姿态控制 反步滑模控制 rbf神经网络 鲁棒自适应控制
在线阅读 下载PDF
车辆主动悬架RBF神经网络的模型预测控制仿真研究
2
作者 顾苏怡 蒋昌华 《中国工程机械学报》 北大核心 2025年第3期410-414,共5页
为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,... 为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,利用RBF神经网络结构捕捉车辆主动悬架系统的复杂动态特性,通过对大量数据的学习和训练,能够快速建立主动悬架MPC参数,最终实现对车辆主动悬架系统的精确控制。利用Matlab软件对车辆主动悬架的车身加速度、悬架位移、轮胎位移进行仿真,评估车辆不同控制策略的行驶性能。结果显示:在路面信号激励下采用MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较大;采用RBF神经网络的MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较小。所提出的RBF神经网络MPC系统,能够增强车辆主动悬架抗干扰能力,从而保持车辆行驶的稳定性和舒适性。 展开更多
关键词 车辆 主动悬架 rbf神经网络 模型预测控制 仿真
在线阅读 下载PDF
基于自适应RBF神经网络具有模型不确定性的四旋翼无人机指定时间预设性能控制方法 被引量:5
3
作者 张园 郑鸿基 +3 位作者 刘海涛 韦丽娇 沈德战 赵振华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期64-73,共10页
四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立... 四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立,并且在执行任务过程中存在外部未知扰动问题,提出了一种基于指定时间预设性能控制方法,将四旋翼无人机的轨迹跟踪问题转换为对位置子系统和姿态子系统的期望指令跟踪问题;其次,在设计控制器过程中,为了解决“微分爆炸”问题产生的滤波器误差,引入一种新型滤波误差补偿方法,通过RBF神经网络逼近外部未知扰动,并将预测结果补偿给控制器以提高轨迹跟踪的鲁棒性。最后,应用仿真模拟方法验证无人机控制系统稳定性和性能优势,通过飞行试验验证,微风聚拢环境下实际飞行轨迹与仿真模拟结果趋于一致,自主轨迹跟踪起降位置偏差小于1 cm,证明了所提出算法的有效性。 展开更多
关键词 四旋翼无人机 rbf神经网络 轨迹跟踪控制 预设性能约束 模型不确定性
在线阅读 下载PDF
复杂网络的无模型自适应牵制控制
4
作者 陶昭 侯忠生 《复杂系统与复杂性科学》 北大核心 2025年第2期120-127,共8页
针对复杂网络结构复杂、难以建模、控制器设计困难等问题,提出了对带有未知非线性耦合复杂网络的无模型自适应牵制控制方案。首先选取牵制控制节点,并基于受控节点上测量得到的输入输出数据对受控网络未知动力学模型作动态线性化数据建... 针对复杂网络结构复杂、难以建模、控制器设计困难等问题,提出了对带有未知非线性耦合复杂网络的无模型自适应牵制控制方案。首先选取牵制控制节点,并基于受控节点上测量得到的输入输出数据对受控网络未知动力学模型作动态线性化数据建模,然后在最小方差准则下推导出相应控制器,从而设计出完全分布式的牵制控制方案。该方案设计仅需网络的输入输出数据而不依赖于复杂网络的模型,是一种数据驱动的牵制控制方法。同步稳定性结论则是基于简约定理、压缩映射和虚拟控制三种方法相结合得到的。仿真结果表明,该方案能够通过牵制控制网络中的少数节点,有效地驱动网络中的所有节点达到同步。 展开更多
关键词 复杂网络 牵制控制 模型自适应控制 kuramoto网络
在线阅读 下载PDF
基于SSA-RBF神经网络的煤自然发火预测模型 被引量:2
5
作者 高飞 梁宁 +1 位作者 贾喆 侯青 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期128-137,共10页
为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(... 为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(i)<120℃)、加速(120≤t_(i)<160℃)和激烈(t_(i)≥160℃)3个氧化阶段,同时分析这3个阶段指标气与煤温的灰色关联度;其次通过不同维度测试函数检验粒子群算法(PSO)、灰狼算法(GWO)和SSA算法性能;最后利用6个矿区数据验证基于SSA-RBF神经网络的煤自燃预测模型的优越性。结果显示,缓慢氧化阶段CO/ΔO_(2)、CO、C_(2)H_(4)这3种指标气体与煤温的灰色关联系数最大;而加速氧化阶段C_(2)H_(4)/C_(2)H_(6)、CO/ΔO_(2)、CO_(2)/CO_(3)种指标与煤温的灰色关联系数最大。3种不同维度函数的测试结果表明:SSA与PSO、GWO相比具有更好的全局搜索能力和稳定性,其收敛速度更快;神经元数量为5个、迭代次数为300次时,SSA-RBF神经网络预测模型对缓慢氧化和加速氧化阶段的预测准确性分别达到了99%和93%。 展开更多
关键词 麻雀搜索算法(SSA) 径向基函数(rbf)神经网络 煤自然发火 预测模型 指标气 灰色关联度
在线阅读 下载PDF
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
6
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(WOA) 模拟退火算法(SA) 径向基神经网络模型(rbf) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于RBF神经网络的超声波电机参数辨识与模型参考自适应控制 被引量:13
7
作者 夏长亮 祁温雅 +1 位作者 杨荣 史婷娜 《中国电机工程学报》 EI CSCD 北大核心 2004年第7期117-121,共5页
超声波电机(USM)是近年发展起来的一种新型微特电机,与传统的电磁驱动型电机的工作原理截然不同。由于USM具有小型轻量、无电磁干扰、响应速度快、低速大转矩、高保持力矩、高功率密度等诸多优点,因而在光学仪器、办公自动化、汽车专用... 超声波电机(USM)是近年发展起来的一种新型微特电机,与传统的电磁驱动型电机的工作原理截然不同。由于USM具有小型轻量、无电磁干扰、响应速度快、低速大转矩、高保持力矩、高功率密度等诸多优点,因而在光学仪器、办公自动化、汽车专用电器、智能机器人、航空航天等领域具有良好的应用前景。但USM的高度非线性、时变性和强耦合增加了它的控制难度。该文提出一种新的USM自适应控制策略。系统采用双闭环控制,内环用来补偿定子环机械谐振频率的漂移;外环利用径向基函数神经网络(RBFNN)控制器调节USM的驱动频率,实现速度的自适应控制。经实验证明,该控制系统具有响应迅速、适应性强等优点,具有较高的控制精度和较好的稳定性。 展开更多
关键词 超声波电机 参数辨识 模型参考 自适应控制 rbf神经网络 微特电机
在线阅读 下载PDF
RBF网络模型参考自适应控制在温度控制中的仿真研究 被引量:12
8
作者 张雅 向虎 +1 位作者 郭芳瑞 张自亮 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第2期429-432,共4页
减压塔侧线温度系统是一个时变非线性复杂系统,采用常规的PID控制回路难以达到较好的控制品质。针对克拉玛依石化厂原油蒸馏装置中的减压塔,根据实际控制要求,提出了RBF神经网络模型参考自适应控制策略,设计了减压塔减三线温度控制系统... 减压塔侧线温度系统是一个时变非线性复杂系统,采用常规的PID控制回路难以达到较好的控制品质。针对克拉玛依石化厂原油蒸馏装置中的减压塔,根据实际控制要求,提出了RBF神经网络模型参考自适应控制策略,设计了减压塔减三线温度控制系统,给出了RBF神经网络控制器和模型辨识网络参数的学习算法。仿真结果表明,采用提出的控制策略,控制效果非常好,完全达到控制要求。 展开更多
关键词 减压塔 rbf神经网络 模型参考自适应控制 模型辨识
在线阅读 下载PDF
基于T-S模糊模型的RBF网络的自适应学习算法 被引量:12
9
作者 李战明 王君 康爱红 《兰州理工大学学报》 CAS 北大核心 2004年第2期82-85,共4页
针对多维模糊推理中的推理规则庞大和参数难辨识的问题,提出一种基于T S模糊模型的RBF神经网络的自适应学习算法.该算法不仅能动态调节T S型模糊RBF网络的隐节点数,还能使网络的数据中心值自适应变化,有较好的自学习能力和优化能力.仿... 针对多维模糊推理中的推理规则庞大和参数难辨识的问题,提出一种基于T S模糊模型的RBF神经网络的自适应学习算法.该算法不仅能动态调节T S型模糊RBF网络的隐节点数,还能使网络的数据中心值自适应变化,有较好的自学习能力和优化能力.仿真结果验证了该算法是有效和可行的,表明此T S型模糊RBF网络不仅可以快速逼近任意多变量非线性函数,而且具有良好的自适应能力. 展开更多
关键词 T-S模糊模型 rbf网络 自适应学习算法 模糊推理 隐节点数
在线阅读 下载PDF
用模糊RBF神经网络简化模型设计多变量自适应模糊控制器 被引量:14
10
作者 鲍鸿 黄心汉 +1 位作者 李锡雄 毛宗源 《控制理论与应用》 EI CAS CSCD 北大核心 2000年第2期169-174,共6页
针对多变量系统实时性要求 ,提出模糊径向基 (RBF)神经网络结构的简化模型及相应算法 ,并对由此简化模型设计的多变量模糊控制器模糊规则的在线自学习算法进行分析 ,提出一种系统动态增益的处理方法和基于过程最优的改进方案 .仿真实验... 针对多变量系统实时性要求 ,提出模糊径向基 (RBF)神经网络结构的简化模型及相应算法 ,并对由此简化模型设计的多变量模糊控制器模糊规则的在线自学习算法进行分析 ,提出一种系统动态增益的处理方法和基于过程最优的改进方案 .仿真实验结果表明该控制器可实现实时自适应控制 ,改进算法是有效的 . 展开更多
关键词 rbf神经网络 过程控制 模糊控制器 自适应控制
在线阅读 下载PDF
基于解耦自适应动态图卷积的交通预测模型
11
作者 郑创锐 邓秀勤 陈磊 《计算机科学》 北大核心 2025年第S1期672-679,共8页
交通预测对城市规划和交通管理起着关键作用,基于机器学习和统计学的传统预测方法在捕捉复杂的非线性关系和长期依赖方面的能力有限,无法捕获交通路网中复杂的时空关系。现有基于图神经网络(GNN)的预测模型大多采用预定的静态图,无法准... 交通预测对城市规划和交通管理起着关键作用,基于机器学习和统计学的传统预测方法在捕捉复杂的非线性关系和长期依赖方面的能力有限,无法捕获交通路网中复杂的时空关系。现有基于图神经网络(GNN)的预测模型大多采用预定的静态图,无法准确反映真实道路网络的拓扑结构,且大多数模型只简单地考虑交通流量在不同节点之间的传播过程,忽略了每个节点本身流量的生成过程。针对以上问题,提出了一种解耦自适应动态图卷积网络模型(Decoupled Adaptive Dynamic Graph Convolutional Network,DADGCN),该模型通过一个自适应动态图模块,有效地量化不同节点间的动态相关性,从而捕捉交通网络中复杂的空间依赖关系,同时通过数据驱动的方式将节点的流量解耦为传播流量和生成流量,利用多头自注意力机制来处理解耦后的信号,从而提高了模型处理复杂交通数据的灵活性,提升了预测精度。实验结果表明,在数据集METR-LA上,DADGCN在60 min上的MAE比基于扩散卷积的模型DCRNN和Graph Wavenet分别提升了7.78%,10.14%;在数据集PEMS-BAY上DADGCN分别提升了25.39%,21.19%。在数据集PEMS04和PEMS08上,DADGCN比基于自适应图模型MTGNN在MAPE和RMSE上分别提升了11.61%和3.90%,表明该模型不仅能够更深入地理解交通流中的固有动态特征,还能够适应各种复杂环境下的变化,为城市交通管理和规划提供更准确、更可靠的数据支持。 展开更多
关键词 交通预测 自适应动态图 图神经网络 模型解耦 多头注意力机制
在线阅读 下载PDF
机械臂轨迹跟踪控制——基于EC-RBF神经网络的机械臂模型参考自适应控制 被引量:5
12
作者 杨剑锋 张翠 张峰 《计算机工程与应用》 CSCD 北大核心 2015年第9期82-86,共5页
针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练... 针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练神经网络,一个用来实现对机械臂进行模型辨识,一个用来实现对机械臂轨迹跟踪控制。对二自由度机械臂进行仿真,结果表明,使用该控制方案对机械臂进行轨迹跟踪控制具有较高的控制精度,且因采用EC-RBF学习算法使网络具有更快的训练速度,从而使得控制过程较迅速。 展开更多
关键词 机械臂轨迹跟踪 模型参考自适应控制 熵聚类-径向基函数(EC-rbf)神经网络
在线阅读 下载PDF
四旋翼飞行器的RBF神经网络鲁棒自适应控制 被引量:1
13
作者 马振伟 白浩 +1 位作者 陈洪波 王劲博 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1620-1628,共9页
针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全... 针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全局一致最终有界的问题,实现了控制精度和鲁棒性的双重提升。所设计的控制器由在近似域内工作的神经网络控制器和在近似域外工作的鲁棒控制器组成。引入一种新型切换函数来实现两者之间的平滑切换,以保证闭环系统的所有信号是全局一致最终有界的。利用Lyapunov函数和Barbalat引理严格证明了非线性四旋翼飞行器系统的稳定性。仿真表明,所设计的控制器在模型不确定性和有界外部扰动下对参考轨迹依旧保持良好的跟踪性能,且跟踪误差趋近于零。 展开更多
关键词 四旋翼飞行器 rbf神经网络 鲁棒自适应控制 平滑切换函数 全局一致最终有界
在线阅读 下载PDF
基于RBF神经网络的高速列车速度跟踪控制
14
作者 秦世玉 徐传芳 李云浩 《北京交通大学学报》 北大核心 2025年第3期111-119,共9页
针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间... 针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间的车间耦合作用力影响,建立高速列车多质点模型.其次,设计一种基于新型饱和函数的高速列车有限时间速度跟踪控制策略,引入非奇异快速终端滑模控制方法实现高速列车系统状态的有限时间收敛,改善高速列车速度跟踪的稳态精度和暂态性能.再次,设计基于RBF神经网络的自适应非奇异终端滑模跟踪控制策略,利用自适应技术实现对列车模型参数以及附加阻力、车间力等不确定性项上限的在线估计,并针对不连续切换控制项造成的抖振现象,引入RBF神经网络重映射非奇异快速终端滑模控制策略的切换控制项,同时设计权重系数的自适应更新律,实现连续切换,有效消除抖振现象所带来的影响.最后,基于Lyapunov稳定性理论证明高速列车速度跟踪控制系统的稳定性,以及系统状态的有限时间收敛性,并以CRH380B型动车组作为控制对象进行仿真验证.仿真结果表明:高速列车可以在有限时间内收敛并跟踪理想轨线,跟踪误差下降了49%,跟踪精度提高,能够为高速列车跟踪控制领域提供借鉴和参考. 展开更多
关键词 高速列车 径向基函数神经网络 多质点模型 速度跟踪 自适应滑模控制
在线阅读 下载PDF
基于自适应神经网络补偿的四旋翼PID控制策略
15
作者 杜飞平 熊振宇 +1 位作者 廖飞 李婷 《兵工自动化》 北大核心 2025年第6期62-68,共7页
针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,... 针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,通过数学推导与仿真分析以消除系统稳态误差,同时提升跟踪精度。在内环姿态控制器设计中,采用自适应RBF神经网络对PID进行补偿性设计,经反复的算法优化与模型验证,构建出高效的控制器模型。基于所设计的四旋翼飞行器模型,结合所提控制策略进行仿真测试。实验结果表明:该方法能对系统所遭受的外部干扰进行高效自适应补偿,有效提升了系统的稳定性,表现出良好的控制能力。 展开更多
关键词 四旋翼飞行器 内外环控制 自适应PID rbf神经网络
在线阅读 下载PDF
基于RBF模糊神经网络的钢轨侧磨预测
16
作者 杨光 孙庆 王伟 《城市轨道交通研究》 北大核心 2025年第S1期92-95,104,共5页
[目的]随着地铁运营时间延长和列车运行速度提升,钢轨磨损程度日益严重,曲线段钢轨侧磨尤其严重,因此需对曲线段钢轨侧磨的影响因素与变化规律进行深入研究。[方法]分析并找出了影响钢轨侧磨产生及发展的主要因素。基于RBF(径向基)模糊... [目的]随着地铁运营时间延长和列车运行速度提升,钢轨磨损程度日益严重,曲线段钢轨侧磨尤其严重,因此需对曲线段钢轨侧磨的影响因素与变化规律进行深入研究。[方法]分析并找出了影响钢轨侧磨产生及发展的主要因素。基于RBF(径向基)模糊神经网络构建了钢轨侧磨预测模型。将钢轨侧磨主要影响因素作为该模型主要参数,并结合上海轨道交通1号线测量数据进行了仿真预测试验。[结果及结论]该模型的钢轨侧磨预测值较好地拟合了实际的钢轨侧磨变化趋势,预测误差在0~1 mm范围内。根据该模型的钢轨侧磨预测结果能够掌握钢轨侧磨的状态变化趋势,能够为指导钢轨更换或打磨作业提供数据支持。 展开更多
关键词 城市轨道交通 钢轨侧磨 rbf模糊神经网络 预测模型
在线阅读 下载PDF
基于自适应神经网络的进气压力自抗扰控制
17
作者 白月 白克强 +1 位作者 李燕清 蒋林 《机床与液压》 北大核心 2025年第13期118-125,共8页
为了实现飞行环境进气系统在过渡态试验时压力的精确控制,减小发动机内部强气流干扰和外部随机噪声干扰的影响,提出一种基于自适应径向基函数神经网络的自抗扰控制方法(RBFNN-ADRC)。通过控制电液伺服系统产生的位置信号,实现进气阀门... 为了实现飞行环境进气系统在过渡态试验时压力的精确控制,减小发动机内部强气流干扰和外部随机噪声干扰的影响,提出一种基于自适应径向基函数神经网络的自抗扰控制方法(RBFNN-ADRC)。通过控制电液伺服系统产生的位置信号,实现进气阀门开度的有效控制。利用现代控制理论建立扩张状态观测器,引入自适应RBFNN对扩张状态观测器进行优化,实现对进气压力控制模型的不确定部分和外部环境扰动的自适应估计。同时,通过对总扰动的线性补偿,提升控制性能。构建基于RBFNN-ADRC控制器的进气压力控制系统进行仿真验证,对比RBFNN-ADRC和目前采用的线性自抗扰控制ADRC的试验效果。结果表明:采用RBFNN-ADRC控制时,发动机过渡态试验中控制进气环境压力时超调量和平均稳态误差均有所降低,表明RBFNN-ADRC的抗干扰性、鲁棒性和跟踪精度均优于传统ADRC控制方法。 展开更多
关键词 进气压力 自适应rbf神经网络 自抗扰控制 扩张状态观测器
在线阅读 下载PDF
基于HJI理论的机械臂自适应神经网络预设性能控制
18
作者 邹臣禧 杨迪 +1 位作者 侯晟煜 雷正玲 《电光与控制》 北大核心 2025年第8期103-108,共6页
以机械臂控制为背景,基于HJI(Hamilton-Jacobi Inequality)理论提出了一种自适应神经网络预设性能控制策略。首先,利用带有预设性能函数的非线性变换,将跟踪误差转换为无约束形式,从而使轨迹跟踪误差以用户指定的收敛速率进入预先指定... 以机械臂控制为背景,基于HJI(Hamilton-Jacobi Inequality)理论提出了一种自适应神经网络预设性能控制策略。首先,利用带有预设性能函数的非线性变换,将跟踪误差转换为无约束形式,从而使轨迹跟踪误差以用户指定的收敛速率进入预先指定的范围。其次,采用反步设计法,利用无约束跟踪误差设计虚拟控制律。然后,根据神经网络的万能逼近特性,采用RBF神经网络对模型不确定项进行逼近。最后,根据RBF神经网络提供的估计值与HJI理论设计了一种新颖的预设性能控制方法。通过Lyapunov函数证明了所提轨迹跟踪闭环系统的稳定性,并在双关节机械臂的仿真中验证了该控制方法的有效性。 展开更多
关键词 多关节机械臂 HJI理论 预设性能控制 rbf神经网络 模型不确定项
在线阅读 下载PDF
进化网络模型:无先验知识的自适应自监督持续学习 被引量:1
19
作者 刘壮 宋祥瑞 +2 位作者 赵斯桓 施雅 杨登封 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3256-3266,共11页
无监督持续学习(UCL)是指能够随着时间的推移而学习,同时在没有监督的情况下记住以前的模式。虽然在这个方向上取得了很大进展,但现有工作通常假设对于即将到来的数据有强大的先验知识(例如,知道类别边界),而在复杂和不可预测的开放环... 无监督持续学习(UCL)是指能够随着时间的推移而学习,同时在没有监督的情况下记住以前的模式。虽然在这个方向上取得了很大进展,但现有工作通常假设对于即将到来的数据有强大的先验知识(例如,知道类别边界),而在复杂和不可预测的开放环境中可能无法获得这些知识。受到现实场景的启发,该文提出一个更实际的问题设置,称为无先验知识的在线自监督持续学习。所提设置具有挑战性,因为数据是非独立同分布的,且缺乏外部监督、没有先验知识。为了解决这些挑战,该文提出一种进化网络模型(英文名EvolveNet),它是一种无先验知识的自适应自监督持续学习方法,能够纯粹地从数据连续体中提取和记忆表示。EvolveNet围绕3个主要组件设计:对抗伪监督学习损失、自监督遗忘损失和在线记忆更新,以进行均匀子集选择。这3个组件的设计旨在协同工作,以最大化学习性能。该文在5个公开数据集上对EvolveNet进行了全面实验。结果显示,在所有设置中,EvolveNet优于现有算法,在CIFAR-10,CIFAR-100和TinyImageNet数据集上的准确率显著提高,同时在针对增量学习的多模态数据集Core-50和iLab-20M上也表现最佳。该文还进行了跨数据集的泛化实验,结果显示Evolve-Net在泛化方面更加稳健。最后,在Github上开源了EvolveNet模型和核心代码,促进了无监督持续学习的进展,并为研究社区提供了有用的工具和平台。 展开更多
关键词 无监督持续学习 自适应自监督 泛化能力 增量学习 进化网络模型
在线阅读 下载PDF
基于不同机器学习模型的滑坡易发性分析及适应性评估
20
作者 王洁 林诚杰 +3 位作者 梁峰铭 季静静 谈松林 刘宇 《科学技术与工程》 北大核心 2025年第2期513-520,共8页
机器学习模型因其强大的特征提取能力被广泛应用于滑坡易发性评价,在应用中其算法在不断改进。为解决常见机器学习模型中精度不高的问题,将分组卷积神经网络模型(group convolutional neural network,GCNN)引入滑坡易发性评价,并与多种... 机器学习模型因其强大的特征提取能力被广泛应用于滑坡易发性评价,在应用中其算法在不断改进。为解决常见机器学习模型中精度不高的问题,将分组卷积神经网络模型(group convolutional neural network,GCNN)引入滑坡易发性评价,并与多种常见机器学习模型结果进行对比分析,综合评估不同机器学习模型在滑坡易发性评价的适应性。以河北省为研究区,从致灾因子、孕灾环境、承灾体这个3个方面出发,共选取16个影响因子,选择GCNN模型和目前常见的机器学习模型——卷积神经网络模型(convolutional neural network,CNN)、逻辑回归模型(Logistic)、随机森林算法模型(random forest,RF)和支持向量机模型(support vector machine,SVM)构建出相应的易发性评价模型,将研究区划分为4类滑坡易发性区域,并对区划的精确性进行综合评价。研究表明,与其他4种机器学习模型相比,GCNN模型在各混淆矩阵指标下拥有更高评分,更适合进行滑坡易发性区划,得到的滑坡易发区划结果与实际发生滑坡点的一致性较好,划分的滑坡灾害易发区更加准确。 展开更多
关键词 机器学习 分组卷积神经网络模型 适应性评价 滑坡易发性评价
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部