期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于K互近邻与核密度估计的DPC算法 被引量:2
1
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 算法 密度峰值 k近邻 k近邻 核密度估计
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:2
2
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊C均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
K近邻的自适应谱聚类快速算法 被引量:4
3
作者 范敏 王芬 +2 位作者 李泽明 李志勇 张晓波 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期147-152,共6页
谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过... 谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过程需要较大的时间和内存开销。研究从构造相似度矩阵入手,以传统NJW算法为基础,提出一种基于K近邻的自适应谱聚类快速算法FA-SC。该算法能自动确定尺度参数σ;同时,对输入数据集分块处理,并用基于K近邻的稀疏相似度矩阵保存样本信息,减少计算的内存开销,提高了运行速度。通过实验,与传统谱聚类算法比较,FA-SC算法在人工数据集和UCI数据集上能够取得更好的聚类效果。 展开更多
关键词 k近邻 稀疏矩阵 自适应 快速算法
在线阅读 下载PDF
面向非球形分布数据的自适应K近邻聚类算法 被引量:3
4
作者 黄晓斌 万建伟 张燕 《计算机工程》 CAS CSCD 北大核心 2003年第11期21-22,165,共3页
针对传统聚类算法处理非球形分布数据的不足,提出了一种新型的自适应K近邻 聚类算法。该算法由数据集归一化、初始类别构造和初始类别融合3个步骤构成。仿真结果 表明,该算法在无须聚类数目的前提下,对非球型分布数据具有很好的聚类... 针对传统聚类算法处理非球形分布数据的不足,提出了一种新型的自适应K近邻 聚类算法。该算法由数据集归一化、初始类别构造和初始类别融合3个步骤构成。仿真结果 表明,该算法在无须聚类数目的前提下,对非球型分布数据具有很好的聚类效果。 展开更多
关键词 非球形分布 模糊C均值算法(FCA) 自适应k近邻算法(aknnca)
在线阅读 下载PDF
一种改进的自适应K近邻聚类算法 被引量:2
5
作者 黄晓斌 万建伟 张燕 《计算机工程与应用》 CSCD 北大核心 2004年第15期76-78,130,共4页
为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为... 为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为此,该文给出了一种改进的自适应k近邻聚类算法。仿真结果表明,新算法不仅保持了原算法在处理非球形分布数据时的优良特性,还成功解决了“奇异”样本问题。 展开更多
关键词 非球形分布 模糊C均值算法(FCA) 自适应k近邻算法(aknnca)改进自适应k近邻算法(Iaknnca)
在线阅读 下载PDF
基于自适应K值算法的微灌管网压力监测点布置模型
6
作者 柳文涛 李金山 +2 位作者 冯亚阳 孙秀路 贾艳辉 《排灌机械工程学报》 北大核心 2025年第8期852-858,共7页
为提高规模化微灌管网安全诊断和压力监测的准确性,减少监测点数量,提出了一种针对规模化微灌管网压力监测点优化布置适应性更强的算法.首先对供水管网初始节点压力数据进行极差标准化处理,通过计算聚类误差总平方和(SSE)的方法自适应... 为提高规模化微灌管网安全诊断和压力监测的准确性,减少监测点数量,提出了一种针对规模化微灌管网压力监测点优化布置适应性更强的算法.首先对供水管网初始节点压力数据进行极差标准化处理,通过计算聚类误差总平方和(SSE)的方法自适应选取管网监测点数量,最后利用不同聚类算法求解确定监测点布设的最优方案.结果表明,随监测点数量增加,SSE值下降呈先快后缓的趋势,研究将曲线出现明显转折的值作为目标监测点数量;计算3条干管在目标算法下的平均轮廓系数分别为0.40089,0.51818,0.41021,比对照算法分别提高了15.3%,2.5%,2.4%.该方法保证了监测点数量的经济性与可靠性和布设位置的准确性,为规模化微灌管网压力安全监测点优化布置提供了理论基础和方法指导. 展开更多
关键词 微灌管网 压力监测点 算法 自适应k 轮廓系数
在线阅读 下载PDF
一种基于自适应标记与区域间近邻传播聚类的分水岭图像分割算法 被引量:19
7
作者 蔡强 刘亚奇 +2 位作者 曹健 李海生 杜军平 《电子学报》 EI CAS CSCD 北大核心 2017年第8期1911-1918,共8页
分水岭算法是一种高效的图像分割算法,能够准确地对图像进行基于区域的分割,但是存在易过分割的问题.为此本文提出一种改进的分水岭算法:首先,对彩色图像进行频谱包络滤波并计算彩色梯度获得梯度图像,再采取一种自适应设定参数的H-minim... 分水岭算法是一种高效的图像分割算法,能够准确地对图像进行基于区域的分割,但是存在易过分割的问题.为此本文提出一种改进的分水岭算法:首先,对彩色图像进行频谱包络滤波并计算彩色梯度获得梯度图像,再采取一种自适应设定参数的H-minima技术,对梯度图像的极小值区域进行标记;然后,对已标记极小值区域的梯度图像进行分水岭分割;最后,计算分水岭分割所得各区域的颜色矩,作为该区域的颜色特征,并对这些区域进行近邻传播聚类获得分割结果.通过与近年来其它改进的分水岭算法和采用聚类的图像分割算法实验比较,本文所提算法能更加有效地抑制过分割,提高分割准确率,具有良好的自适应性和鲁棒性. 展开更多
关键词 分水岭算法 自适应标记 近邻传播 图像分割 过分割
在线阅读 下载PDF
采用聚类算法优化的K近邻协同过滤算法 被引量:20
8
作者 尹航 常桂然 王兴伟 《小型微型计算机系统》 CSCD 北大核心 2013年第4期806-809,共4页
协同过滤推荐是电子商务系统最重要的技术之一,而协同过滤技术中一种被广泛使用的算法就是基于用户评分相似度的K近邻算法.该算法简单有效,易于实现.但K近邻算法在决定待预测样本的预测评分时,并未考虑这K个最近邻与其隶属类别的关联程... 协同过滤推荐是电子商务系统最重要的技术之一,而协同过滤技术中一种被广泛使用的算法就是基于用户评分相似度的K近邻算法.该算法简单有效,易于实现.但K近邻算法在决定待预测样本的预测评分时,并未考虑这K个最近邻与其隶属类别的关联程度.作为评分矩阵中的不同样本,由于它们对分类贡献各不相同,因此在评分预测时需要区别对待.本文采用中心聚类算法,先求出各样本与其所属类别的类别关联度,再利用类别关联度来区别对待待预测样本的K个最近邻.通过实验证明,优化后的K近邻算法能较好的提高推荐精度. 展开更多
关键词 k近邻 协同过滤 算法 别关联度
在线阅读 下载PDF
基于聚类和K近邻算法的井下人员定位算法 被引量:13
9
作者 莫树培 唐琎 +2 位作者 汪郁 赖普坚 金礼模 《工矿自动化》 北大核心 2019年第4期43-48,76,共7页
针对现有基于指纹模的井下定位算法存在的计算量大、实时性低、定位精度较低的问题,提出了基于聚类和K近邻算法的井下人员定位算法。用二分k-means聚类算法对采集的RSSI数据进行分类,建立离线指纹数据库;无线移动终端和动态修正器实时采... 针对现有基于指纹模的井下定位算法存在的计算量大、实时性低、定位精度较低的问题,提出了基于聚类和K近邻算法的井下人员定位算法。用二分k-means聚类算法对采集的RSSI数据进行分类,建立离线指纹数据库;无线移动终端和动态修正器实时采集RSSI值,分别存储到在线定位数据库和动态修正数据库;根据待测点和动态修正器的离线数据和实时数据,采用软硬件动态修正加权K近邻算法计算权重值,结合离线指纹数据库中待测点的物理位置信息估算其实时位置。实验分析结果表明,所提定位算法的最小标准误差为0.46m,最大标准误差为3.26m,平均误差为1.62m。对比分析结果表明,与未进行聚类分析的算法相比,本文算法的精度更高,实时性更好;与未动态修正权重值的算法相比,本文算法的运算时间略有增加,但定位精度提高了37.21%。 展开更多
关键词 井下人员定位 指纹定位 二分k-means算法 软硬件动态修正加权k近邻算法 动态修正
在线阅读 下载PDF
自适应K值的粒子群聚类算法 被引量:10
10
作者 白树仁 陈龙 《计算机工程与应用》 CSCD 北大核心 2017年第16期116-120,共5页
传统K-means算法除了对初始聚类中心的选择非常敏感,易收敛到局部最优解外,还存在着K值难以确定的问题,不合适的K值往往会得到较差的聚类结果。而K值问题也是聚类分析中的一个重要的研究方向,在粒子群聚类算法的基础上,结合K-means算法... 传统K-means算法除了对初始聚类中心的选择非常敏感,易收敛到局部最优解外,还存在着K值难以确定的问题,不合适的K值往往会得到较差的聚类结果。而K值问题也是聚类分析中的一个重要的研究方向,在粒子群聚类算法的基础上,结合K-means算法,提出了自适应K值的粒子群聚类算法。当算法收敛时,可通过比较不同K值时全局最优适应度值之间的关系来决定K值的增大与减小。实验表明改进的算法可以有效指导K值的选取,并且具有较好的聚类效果。 展开更多
关键词 粒子群算法 k-MEANS算法 自适应k 收敛
在线阅读 下载PDF
可拓K近邻算法在数据聚类分析中的应用 被引量:1
11
作者 杨仪 向长城 魏代俊 《计算机工程与应用》 CSCD 北大核心 2010年第21期156-159,共4页
针对区间值数据的数据聚类问题,根据可拓学关联函数的定义,提出可拓距离的概念来度量数据之间的距离,利用K近邻的思想,根据可拓距离的大小对数据集的目标属性进行投票选择进行分类,设计了可拓K近邻算法(Extension K Nearest Neighbor,EK... 针对区间值数据的数据聚类问题,根据可拓学关联函数的定义,提出可拓距离的概念来度量数据之间的距离,利用K近邻的思想,根据可拓距离的大小对数据集的目标属性进行投票选择进行分类,设计了可拓K近邻算法(Extension K Nearest Neighbor,EKNN)。最后利用UCI的两个基准数据集Iris植物样本数据和糖尿病数据库PIDD进行验证,首先通过免疫网络约简算法对条件属性进行最小属性约简,然后利用EKNN算法分析和比较不同最小约简属性下的分类准确率。 展开更多
关键词 数据 可拓距离 可拓k近邻算法 属性约简
在线阅读 下载PDF
一种基于K近邻团的聚类算法
12
作者 曲超 袁瑞芬 魏小锐 《科学技术与工程》 北大核心 2013年第19期5696-5701,共6页
在K近邻和逆K近邻理论基础上提出了K近邻团的概念。通过度量对象间的相似度,任意两个元素都互为K近邻和逆K近邻的对象集合构成一个K近邻团。利用同一个K近邻团中的对象彼此都具有较高相似性的特点,选取不同的K值对目标集合进行聚类。通... 在K近邻和逆K近邻理论基础上提出了K近邻团的概念。通过度量对象间的相似度,任意两个元素都互为K近邻和逆K近邻的对象集合构成一个K近邻团。利用同一个K近邻团中的对象彼此都具有较高相似性的特点,选取不同的K值对目标集合进行聚类。通过实验证明了该方法的有效性。 展开更多
关键词 k近邻 k近邻 k近邻 算法
在线阅读 下载PDF
近邻关系约束和簇心扩散的密度峰值聚类算法
13
作者 杨重阳 徐华 张紫丹 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2830-2837,共8页
研究表明,对于非球形簇和密度不均匀的聚类,DPC很难选择正确的簇中心;同时,DPC的分配方法存在多米诺骨牌效应,即不正确的分配一个区域中密度最高的点,将导致该区域中的所有点都指向同一个错误的聚类.为了解决这两个不足,本文提出了近邻... 研究表明,对于非球形簇和密度不均匀的聚类,DPC很难选择正确的簇中心;同时,DPC的分配方法存在多米诺骨牌效应,即不正确的分配一个区域中密度最高的点,将导致该区域中的所有点都指向同一个错误的聚类.为了解决这两个不足,本文提出了近邻关系约束和簇心扩散的密度峰值聚类算法(DPC-NCCD).首先,引入了k近邻和二阶k近邻来重新定义局部密度,避免了密度不均匀的数据集在选取密度峰值时候出现的错误,确保簇心选择的正确性;其次,对于剩余样本的分配,本文采用三阶段的分配策略,每个阶段中依据不同的近邻关系约束条件来逐步扩大类簇.这样的分配策略可以缓解多米诺效应,并提高在流形数据集上的正确性.通过人工数据和真实数据的测试,证明了该算法在密度不均匀的流形数据集上具有良好的聚类性能. 展开更多
关键词 算法 密度峰值 k近邻 二阶k近邻
在线阅读 下载PDF
基于聚类优选自适应KNN的改进定位算法 被引量:16
14
作者 商磊 关维国 龚瑞雪 《传感器与微系统》 CSCD 北大核心 2023年第3期136-139,共4页
针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优... 针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优选自适应KNN进行加权KNN(WKNN)算法定位估计,削弱了含有较大误差的近邻点参与定位的影响,显著提高了算法的定位精度。实验结果表明:在3 m网格及3 dBm噪声标准差条件下,改进MWKNN定位算法的均方根误差为0.92 m,平均定位误差小于0.74 m;2 m精度下的概率达到96%。定位精度明显优于传统KNN和WKNN算法,同时提升了定位结果的稳定性。 展开更多
关键词 室内定位 MeanShift 几何位置优选 自适应k近邻 加权k近邻定位
在线阅读 下载PDF
结合K近邻的改进密度峰值聚类算法 被引量:22
15
作者 薛小娜 高淑萍 +1 位作者 彭弘铭 吴会会 《计算机工程与应用》 CSCD 北大核心 2018年第7期36-43,共8页
针对密度峰值聚类算法(DPC)在处理维数较高、含噪声及结构复杂数据集时聚类性能不佳问题,提出一种结合K近邻的改进密度峰值聚类算法(IDPCA)。该算法首先给出新的局部密度度量方法来描述每个样本在空间中的分布情况,然后引入核心点的概... 针对密度峰值聚类算法(DPC)在处理维数较高、含噪声及结构复杂数据集时聚类性能不佳问题,提出一种结合K近邻的改进密度峰值聚类算法(IDPCA)。该算法首先给出新的局部密度度量方法来描述每个样本在空间中的分布情况,然后引入核心点的概念并结合K近邻思想设计了全局搜索分配策略,通过不断将核心点的未分配K近邻正确归类以加快聚类速度,进而提出一种基于K近邻加权的统计学习分配策略,利用剩余点的K近邻加权信息来确定其被分配到各局部类的概率,有效提高了聚类质量。实验结果表明,IDPCA算法在21个典型的测试数据集上均有良好的适用性,而在与DPC算法及另外3种典型聚类算法的性能指标对比上,其优势更为明显。 展开更多
关键词 数据挖掘 算法 局部密度 密度峰值 k近邻
在线阅读 下载PDF
一种基于K近邻的比较密度峰值聚类算法 被引量:13
16
作者 杜沛 程晓荣 《计算机工程与应用》 CSCD 北大核心 2019年第10期161-168,共8页
快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决... 快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决策图中类簇中心点与非类簇中心点的区分不够明显,使类簇中心的选取变得困难。针对这些问题,对其算法进行了优化,并提出了基于K近邻的比较密度峰值聚类算法(Comparative Density Peak Clustering algorithm Based on K-Nearest Neighbors,CDPC-KNN)。算法结合K近邻概念重新定义了截断距离和局部密度的度量方法,对任意数据集能自适应地生成截断距离,并使局部密度的计算结果更符合数据的真实分布。同时在决策图中引入距离比较量代替原距离参数,使类簇中心在决策图上更加明显。通过实验验证,CDPC-KNN算法的聚类效果整体上优于CFSFDP算法与DBSCAN算法,分离度实验表明新算法使类簇中心与非类簇中心点的区分度得到有效提高。 展开更多
关键词 算法 密度峰值 k近邻 决策图 簇中心
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
17
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 k-MEANS算法 密度峰值 k近邻
在线阅读 下载PDF
基于万有引力的自适应近邻传播聚类算法 被引量:6
18
作者 王治和 常筱卿 杜辉 《计算机应用》 CSCD 北大核心 2021年第5期1337-1342,共6页
针对近邻传播(AP)聚类算法对参数偏向参数(Preference)敏感、不适用于稀疏数据、聚类结果中会出现错误聚类的样本点的问题,提出基于万有引力的自适应近邻传播聚类(GA-AP)算法。首先,在传统AP算法的基础上采用引力搜索机制对样本进行全... 针对近邻传播(AP)聚类算法对参数偏向参数(Preference)敏感、不适用于稀疏数据、聚类结果中会出现错误聚类的样本点的问题,提出基于万有引力的自适应近邻传播聚类(GA-AP)算法。首先,在传统AP算法的基础上采用引力搜索机制对样本进行全局寻优;其次,在全局寻优的基础上利用信息熵和自适应增强(AdaBoost)算法找到每个簇内正确聚类和错误聚类的样本点,并计算出这些样本点的权值,用计算出的权值更新对应的样本点,从而更新相似度、Preference取值、吸引度和隶属度,并进行重新聚类。不断操作以上步骤直到达到最大的迭代次数。通过在9个数据集上的仿真实验得出,相比于基于自适应属性加权的近邻传播聚类(AFW_AP)算法、AP算法、K均值聚类(K-means)算法和模糊C均值(FCM)算法,所提算法的纯度(Purity)、F值(F-measure)和准确率(ACC)的平均值分别最高提升了0.69、71.74%和98.5%。实验结果表明,所提算法降低了对偏向参数的依赖,提高了聚类效果,特别是对于稀疏数据集的聚类结果的准确率。 展开更多
关键词 近邻传播 偏向参数 万有引力定律 信息熵 自适应增强算法
在线阅读 下载PDF
基于交通拥堵信息的高速公路拥堵路段ACK-Means聚类
19
作者 陈昕 阮永娇 肇毓 《科学技术与工程》 北大核心 2024年第21期9194-9200,共7页
为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇... 为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。 展开更多
关键词 交通拥堵 ACk-Means算法 自适应中心 自适应k 交通拥堵信息
在线阅读 下载PDF
基于改进人工蜂群算法的K均值聚类算法 被引量:50
20
作者 喻金平 郑杰 梅宏标 《计算机应用》 CSCD 北大核心 2014年第4期1065-1069,1088,共6页
针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC... 针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC算法的适应度函数以及一种基于全局引导的位置更新公式以提高迭代寻优过程的效率。将改进的人工蜂群算法与KMC算法结合提出IABC-Kmeans算法以改善聚类性能。通过Sphere、Rastrigin、Rosenbrock和Griewank四个标准测试函数和UCI标准数据集上进行测试的仿真实验表明,IABC算法收敛速度快,克服了原始算法易陷入局部最优解的缺点;IABC-Kmeans算法则具有更好的聚类质量和综合性能。 展开更多
关键词 人工蜂群算法 k均值算法 适应度函数 位置更新公式
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部