针对区间值数据的数据聚类问题,根据可拓学关联函数的定义,提出可拓距离的概念来度量数据之间的距离,利用K近邻的思想,根据可拓距离的大小对数据集的目标属性进行投票选择进行分类,设计了可拓K近邻算法(Extension K Nearest Neighbor,EK...针对区间值数据的数据聚类问题,根据可拓学关联函数的定义,提出可拓距离的概念来度量数据之间的距离,利用K近邻的思想,根据可拓距离的大小对数据集的目标属性进行投票选择进行分类,设计了可拓K近邻算法(Extension K Nearest Neighbor,EKNN)。最后利用UCI的两个基准数据集Iris植物样本数据和糖尿病数据库PIDD进行验证,首先通过免疫网络约简算法对条件属性进行最小属性约简,然后利用EKNN算法分析和比较不同最小约简属性下的分类准确率。展开更多
快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决...快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决策图中类簇中心点与非类簇中心点的区分不够明显,使类簇中心的选取变得困难。针对这些问题,对其算法进行了优化,并提出了基于K近邻的比较密度峰值聚类算法(Comparative Density Peak Clustering algorithm Based on K-Nearest Neighbors,CDPC-KNN)。算法结合K近邻概念重新定义了截断距离和局部密度的度量方法,对任意数据集能自适应地生成截断距离,并使局部密度的计算结果更符合数据的真实分布。同时在决策图中引入距离比较量代替原距离参数,使类簇中心在决策图上更加明显。通过实验验证,CDPC-KNN算法的聚类效果整体上优于CFSFDP算法与DBSCAN算法,分离度实验表明新算法使类簇中心与非类簇中心点的区分度得到有效提高。展开更多
为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇...为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。展开更多
文摘针对区间值数据的数据聚类问题,根据可拓学关联函数的定义,提出可拓距离的概念来度量数据之间的距离,利用K近邻的思想,根据可拓距离的大小对数据集的目标属性进行投票选择进行分类,设计了可拓K近邻算法(Extension K Nearest Neighbor,EKNN)。最后利用UCI的两个基准数据集Iris植物样本数据和糖尿病数据库PIDD进行验证,首先通过免疫网络约简算法对条件属性进行最小属性约简,然后利用EKNN算法分析和比较不同最小约简属性下的分类准确率。
文摘快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决策图中类簇中心点与非类簇中心点的区分不够明显,使类簇中心的选取变得困难。针对这些问题,对其算法进行了优化,并提出了基于K近邻的比较密度峰值聚类算法(Comparative Density Peak Clustering algorithm Based on K-Nearest Neighbors,CDPC-KNN)。算法结合K近邻概念重新定义了截断距离和局部密度的度量方法,对任意数据集能自适应地生成截断距离,并使局部密度的计算结果更符合数据的真实分布。同时在决策图中引入距离比较量代替原距离参数,使类簇中心在决策图上更加明显。通过实验验证,CDPC-KNN算法的聚类效果整体上优于CFSFDP算法与DBSCAN算法,分离度实验表明新算法使类簇中心与非类簇中心点的区分度得到有效提高。
文摘为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。