期刊文献+
共找到2,802篇文章
< 1 2 141 >
每页显示 20 50 100
基于萤火虫算法优化BP神经网络的核电厂故障参数预测
1
作者 刘涛 谢金森 +4 位作者 邓年彪 陈鹏宇 吴智强 张二品 于涛 《核科学与工程》 北大核心 2025年第1期120-130,共11页
随着核电厂向数字化和智能化转型,利用神经网络对瞬态参数进行预测,辅助操作人员处理事故成为可能。针对基于梯度下降的BP神经网络在预测核电厂瞬态参数时可能陷入局部最优的问题,提出了一种结合萤火虫算法(Firefly Algorithm,FA)优化... 随着核电厂向数字化和智能化转型,利用神经网络对瞬态参数进行预测,辅助操作人员处理事故成为可能。针对基于梯度下降的BP神经网络在预测核电厂瞬态参数时可能陷入局部最优的问题,提出了一种结合萤火虫算法(Firefly Algorithm,FA)优化的BP神经网络(FA-BP神经网络)。使用PCTRAN仿真软件生成的数据,比较了FA-BP神经网络与传统BP网络在预测性能上的差异,并应用FA-BP神经网络进行故障诊断。研究结果表明,FA-BP神经网络在训练效率和预测精度方面均显著优于传统BP网络,并在故障诊断中展现出高准确率。实验表明FA-BP模型能够支持核电厂操作人员在事故中更有效地管理机组状态,增强核电安全性。 展开更多
关键词 核电厂 瞬态参数预测 萤火虫算法 bp神经网络
在线阅读 下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
2
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 bp神经网络 模糊化
在线阅读 下载PDF
基于BP神经网络的用户侧用电负荷自适应预测方法
3
作者 张传远 陈亚天 +2 位作者 高振伟 齐永忠 杨夏祎 《信息技术》 2025年第2期187-192,共6页
为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧... 为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧用电负荷残缺数据和误差数据进行修补。基于BP神经网络,采用粒子群算法对BP神经网络的初始权重和门限进行优化,实现用户侧用电负荷自适应预测。实验结果表明,文中方法的负荷预测结果更加接近于实际值,能够准确预测用户侧用电负荷。 展开更多
关键词 bp神经网络 用户侧 用电负荷 自适应预测 粒子群算法
在线阅读 下载PDF
融合自适应SSAE与神经网络算法的网络安全模型研究
4
作者 林金妹 韦冰东 《信息技术与信息化》 2025年第2期139-142,共4页
为提升网络安全防护的智能化与精准度,利用自适应SSAE与神经网络融合算法,优化设计网络安全模型。采用网络爬虫算法,采集网络运行数据以此作为模型输入值。从防护时间、风险容忍度等方面设置模型约束条件。以自适应堆叠稀疏自编码器和... 为提升网络安全防护的智能化与精准度,利用自适应SSAE与神经网络融合算法,优化设计网络安全模型。采用网络爬虫算法,采集网络运行数据以此作为模型输入值。从防护时间、风险容忍度等方面设置模型约束条件。以自适应堆叠稀疏自编码器和神经网络构建与融合,通过算法的学习迭代提取网络运行特征,根据提取特征与网络异常标准特征的匹配度,确定网络的异常状态与类型。根据网络异常检测结果,通过异常节点隔离、安全加固、访问控制3个步骤,实现模型的安全防御功能。通过模型测试实验得出结论:与传统模型相比,优化设计模型的网络攻击误检率和漏检率分别下降4.25%和3.55%,在模型作用下网络丢包率降低1.28%。 展开更多
关键词 自适应SSAE算法 神经网络算法 融合算法 网络安全 模型设计
在线阅读 下载PDF
基于PSO算法优化BP神经网络的PM_(2.5)浓度预测模型
5
作者 李佳林 侯利明 张聪 《现代信息科技》 2025年第7期47-51,57,共6页
针对传统的BP神经网络收敛速度较慢且易陷入局部最优解的问题,文章提出了一种基于粒子群优化(PSO)算法优化BP神经网络的PM_(2.5)浓度预测模型,从而能够快速收敛并得到全局最优解。首先,通过皮尔逊相关性分析筛选出与PM_(2.5)浓度相关性... 针对传统的BP神经网络收敛速度较慢且易陷入局部最优解的问题,文章提出了一种基于粒子群优化(PSO)算法优化BP神经网络的PM_(2.5)浓度预测模型,从而能够快速收敛并得到全局最优解。首先,通过皮尔逊相关性分析筛选出与PM_(2.5)浓度相关性较高的污染物指标作为输入变量。其次,利用PSO算法优化BP神经网络的初始权重和阈值,克服了BP神经网络易陷入局部最优、收敛速度慢的缺点。最后,利用成都市2021年7月至2024年6月的大气污染物数据对模型进行训练和测试。结果表明,测试集的R^(2)达到0.944,测试集的MAE为4.231,测试集的RMSE为6.364。与未优化的BP神经网络模型相比,PSO-BP模型具有更高的预测精度和更快的收敛速度,能够有效地预测成都市次日的PM_(2.5)浓度。 展开更多
关键词 PM_(2.5)浓度 预测模型 PSO算法 bp神经网络
在线阅读 下载PDF
基于LM算法改进BP神经网络的薄膜电阻高精度测量
6
作者 张钰 王琰 +2 位作者 彭正凤 马俊杰 王静 《大学物理实验》 2025年第2期64-69,共6页
在半导体工艺中,电阻测量极其关键。传统四探针法在测量薄膜的电阻时,需对范德堡函数进行非线性拟合,不仅耗时较长,且精度较差。针对该现象提出了一种基于Levenberg-Marquardt(LM)算法的Back propagation neural network(BPNN)神经网络... 在半导体工艺中,电阻测量极其关键。传统四探针法在测量薄膜的电阻时,需对范德堡函数进行非线性拟合,不仅耗时较长,且精度较差。针对该现象提出了一种基于Levenberg-Marquardt(LM)算法的Back propagation neural network(BPNN)神经网络模型。LM算法结合了梯度下降法和牛顿法的优点,在迭代过程中快速接近全局最小值,且对于局部最小值的陷落情况优于纯梯度下降法,结合BP神经网络的反向传播误差来调整权重,从而实现复杂非线性函数的拟合。对含反双曲余弦的超越函数(范德堡函数)的局部参数进行非线性拟合,得到最大偏差为2.08×10^(-5),相对标准偏差为2.16×10^(-8)的神经网络拟合模型,对比规范化多项式拟合方法精度提升99.5%。此改进方法,可极大提高测量结果的稳定性与精确性,将模型运用于实验测量过程,有效改善了电阻率测试精度。 展开更多
关键词 bp神经网络 范德堡法 非线性函数拟合 电阻率测量 LM算法
在线阅读 下载PDF
基于大数据分析及BP神经网络算法的工程造价风险预警模型构建与应用
7
作者 吴建军 《门窗》 2025年第4期175-177,共3页
在工程建设的经济成本管理中,制定风险预警模型至关重要。本文利用大数据分析技术,构建了一套有效的针对工程造价风险的预警模型,为预测和控制工程造价风险提供切实可行的策略和决策支持。通过广泛搜集各方面的文献资料,确定了影响工程... 在工程建设的经济成本管理中,制定风险预警模型至关重要。本文利用大数据分析技术,构建了一套有效的针对工程造价风险的预警模型,为预测和控制工程造价风险提供切实可行的策略和决策支持。通过广泛搜集各方面的文献资料,确定了影响工程造价风险的主要因素,并充分利用大数据的优势深入挖掘并分析这些因素。预警模型对于工程项目的风险管理,尤其是工程造价风险的预警,提供了一种全新的视角和实践方法。 展开更多
关键词 大数据分析 工程造价风险 预警模型 bp神经网络算法 风险管理
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断
8
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测
9
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
BP神经网络在离心压缩机叶轮优化中的应用
10
作者 董志强 于根亮 +1 位作者 董逸飞 陈义恒 《汽车实用技术》 2025年第2期56-62,共7页
为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的... 为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的映射关系,结合IPSO优化其参数,同时利用遗传算法(GA)确定叶轮的最佳性能参数。研究表明,改进的IPSO算法通过增强粒子群的动态适应性和全局搜索能力,提高了BP神经网络的预测精度和优化效率。优化后的叶轮等熵效率提高1.34%,多变效率提高1.04%,流量增加10.4%。该方法显著提升了离心式压缩机叶轮的设计效率和性能,为复杂流体机械的优化设计提供了新思路。 展开更多
关键词 离心式压缩机 CFD仿真 叶轮参数优化 bp神经网络 遗传算法
在线阅读 下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:2
11
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
12
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(~(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(~(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 bp神经网络 粒子群优化 参数优化 适应度函数
在线阅读 下载PDF
基于SSA-BP神经网络的无人机发射参数择优
13
作者 贾华宇 郑会龙 +1 位作者 周洪 张谦 《华南理工大学学报(自然科学版)》 北大核心 2025年第4期90-101,共12页
火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在... 火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在发射参数迭代择优周期长、设计交互性差、容易造成无人机飞行姿态失稳的问题。该文以某无人机为研究对象,对其发射阶段进行动力学及运动学建模,构建了六自由度非线性模型,基于QT/C++软件编制无人机发射弹道参数化仿真软件,并结合某无人机真实发射试验数据,验证该发射弹道仿真软件的有效性。同时,为解决发射参数自主择优问题,在反向传播(BP)神经网络参数预测模型的基础上引入麻雀搜索算法(SSA)、粒子群优化算法(PSO)、遗传算法(GA)优化模块,提出基于SSA优化BP神经网络的无人机发射参数寻优方法,消除BP神经网络在参数预测过程中存在的过拟合及局部最优效应,对参数预测结果求绝对误差(MAE)、平均百分百误差(MAPE)、均方根误差(RMSE),综合评估SSA-BP对发射参数预测的优越性,并通过发射弹道校核验证发射参数选取的合理性。结果表明,SSA-BP模型对发射参数的预测精度最高、鲁棒性最好,可为无人机发射分系统工程设计阶段的发射参数自主择优选取提供设计依据。 展开更多
关键词 无人机发射 麻雀搜索算法 bp神经网络 参数寻优 建模仿真
在线阅读 下载PDF
基于GA-BP神经网络岩石单轴抗压强度预测模型研究
14
作者 张奥宇 杨科 +1 位作者 池小楼 张杰 《煤》 2025年第1期6-10,17,共6页
为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-B... 为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-BP神经网络对煤矿砂岩与泥岩单轴抗压强度进行了预测,并与传统的BP神经网络和非线性回归分析法进行了比较。研究结果表明,GA-BP神经网络预测模型在预测砂岩和泥岩单轴抗压强度与弹性模量间关系上具有较高的精度和泛化能力,能够有效地解决传统BP神经网络的局部最优和过拟合问题,相较于非线性回归分析,拥有更强的非线性关系建模能力,是一种适用于砂岩与泥岩单轴抗压强度预测的有效方法。 展开更多
关键词 岩石力学参数 非线性回归 bp神经网络 遗传算法 预测模型
在线阅读 下载PDF
基于SOA-BP神经网络的显示器颜色特性化研究
15
作者 王荣欣 郭凌华 +2 位作者 陈睿 赵甜甜 孙英 《印刷与数字媒体技术研究》 北大核心 2025年第2期20-28,共9页
为了保证显示设备的颜色显示准确性,在对显示设备进行色彩管理时,需要提高显示器颜色特性化精度。本研究提出一种基于海鸥优化算法(Seagull Optimization Algorithm,SOA)优化BP神经网络(SOA-BP)的显示器颜色特性化模型。首先,采用K折交... 为了保证显示设备的颜色显示准确性,在对显示设备进行色彩管理时,需要提高显示器颜色特性化精度。本研究提出一种基于海鸥优化算法(Seagull Optimization Algorithm,SOA)优化BP神经网络(SOA-BP)的显示器颜色特性化模型。首先,采用K折交叉验证方法确定BP神经网络最佳隐藏层神经元个数,建立显示器输入信号RGB值与显示颜色L^(*)a^(*)b^(*)之间转换的BP神经网络模型;然后,通过海鸥算法对BP神经网络的权值阈值进行优化,建立基于SOA优化BP神经网络的显示器颜色特性化模型;最后,对优化前后的神经网络模型进行训练与测试,并进行模型精度对比分析。在仿真实验中,海鸥算法优化BP神经网络预测模型测试10次得到的CIELAB色差△E_(ab)^(*)和CIE2000色差ΔE_(00)平均值分别为2.291和1.032,较优化前分别减少了31.79%和36.18%,且优化后的SOA-BP模型更稳定,说明本研究所建立的SOA-BP网络模型对显示器颜色特性化具有较高的预测精度和较好的稳定性,为印刷包装领域色彩管理颜色特性化提供了理论和实践的参考。 展开更多
关键词 bp神经网络 显示器颜色特性化 K折交叉验证 海鸥算法
在线阅读 下载PDF
一种基于ISSA-BP神经网络的火控系统故障预测方法
16
作者 孟新冉 李英顺 +1 位作者 王德彪 杨松 《火炮发射与控制学报》 北大核心 2025年第1期52-58,共7页
陀螺仪组能够产生高低方向和水平方向上的稳定和瞄准信号,同时也能够为系统提供火炮更新位置之后的驱动信号,在整个火控系统中发挥着非常关键的作用,因此对陀螺仪组的故障预测非常重要。为了提高预测准确性,提出一种融合正余弦算法和Lev... 陀螺仪组能够产生高低方向和水平方向上的稳定和瞄准信号,同时也能够为系统提供火炮更新位置之后的驱动信号,在整个火控系统中发挥着非常关键的作用,因此对陀螺仪组的故障预测非常重要。为了提高预测准确性,提出一种融合正余弦算法和Levy飞行改进麻雀算法(ISSA)优化BP神经网络的预测方法。利用Circle混沌映射初始化种群,在发现者位置更新时,引入非线性动态学习因子以及融合正余弦的思想,在追随者更新位置时,引入Levy飞行策略,建立ISSA-BP故障预测模型。为了验证模型预测的精度,同时与BP模型、PSO-BP模型、GWO-BP模型、SSA-BP模型进行实验对比,实验结果显示ISSA-BP模型比其他4种模型预测精度更高。 展开更多
关键词 Circle混沌映射 故障预测 火控系统 bp神经网络 麻雀搜索算法
在线阅读 下载PDF
紫外光谱结合BP神经网络算法建立食用油掺伪煎炸油的快速鉴定模型
17
作者 陈林林 吴松遥 +5 位作者 王玲 张铭 李昕彤 张海鹏 郝熙 李伟 《中国粮油学报》 CAS CSCD 北大核心 2024年第6期206-214,共9页
为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后... 为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后的光谱特征峰与BP(Backpropagation)神经网络算法结合建立食用油掺伪煎炸油模型,对掺入煎炸油类别、煎炸时间和煎炸油含量进行鉴别分析。结果表明二阶导数预处理后掺伪煎炸油的光谱特征峰中大豆油为446、462 nm、玉米油为268、274 nm、葵花籽油为280、288 nm,根据其特征峰位与峰值建立Levenberg–Marquardt算法(LMA)、动量梯度下降法(MGD)及弹性梯度下降法(EGD)掺伪模型识别率分别为98.15%、91.67%、95.52%。 展开更多
关键词 食用油 煎炸油 紫外光谱 掺伪 bp神经网络算法
在线阅读 下载PDF
基于GA-BP神经网络的防空导弹实时目标分配方法
18
作者 孙栋一 蒲宇亭 章建榜 《空天防御》 2025年第1期62-70,共9页
针对现代防空作战中作战环境高动态变化的状况,防空导弹武器系统需要实时在线解决目标分配的问题,为此本文提出了一种基于遗传算法(Genetic Algorithm, GA)优化+BP(Back Propagation)神经网络学习的防空导弹实时目标分配方法。首先,综... 针对现代防空作战中作战环境高动态变化的状况,防空导弹武器系统需要实时在线解决目标分配的问题,为此本文提出了一种基于遗传算法(Genetic Algorithm, GA)优化+BP(Back Propagation)神经网络学习的防空导弹实时目标分配方法。首先,综合考虑防空导弹武器数量及毁伤概率等要素,以毁伤效能最大为优化目标,建立防空导弹目标分配问题优化模型;其次,构建基于GA-BP神经网络的防空导弹目标分配框架,利用遗传算法求解加BP神经网络预测,实现当前防空导弹对威胁目标的准确高效分配;最后,利用优化后的神经网络进行仿真分析,以验证所提方法的有效性和实用性。 展开更多
关键词 防空导弹 遗传算法 bp神经网络 目标分配 辅助决策
在线阅读 下载PDF
基于粒子群优化BP神经网络的水质监测方法研究
19
作者 闫佳 刘倩男 刘诚 《现代信息科技》 2025年第3期153-156,163,共5页
近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络... 近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络的出现大幅提升了传统技术在预测和数据处理方面的效果。在此基础上,通过粒子群算法对BP神经网络进行优化(PSO-BP),结果显示优化后的模型具有更高的准确度和更小的误差。这不仅进一步提高了水质监测的准确性和时效性,还显著降低了监测成本,节省了人力、物力和财力,为水质监测提供了一种新的技术手段。 展开更多
关键词 人工智能 水质监测 粒子群算法 bp神经网络
在线阅读 下载PDF
BP神经网络模型在安陵节制闸流量预测中的应用
20
作者 王瑞星 王吉杰 张媛媛 《河北水利》 2025年第1期43-45,共3页
以安陵节制闸自由孔流流态下的闸上水头、闸门开度、闸门开宽和实测流量等数据,运用SPSSAU在线软件,建立基于遗传算法的BP神经网络模型,将神经元输入层优化为面积与流速双因子,实测流量为唯一输出层。经过对模型进行训练,发现这一模型... 以安陵节制闸自由孔流流态下的闸上水头、闸门开度、闸门开宽和实测流量等数据,运用SPSSAU在线软件,建立基于遗传算法的BP神经网络模型,将神经元输入层优化为面积与流速双因子,实测流量为唯一输出层。经过对模型进行训练,发现这一模型适应性较好,预测流量与实测流量对比,误差值相对较小,可为节制闸实现精准流量控制提供新的参考。 展开更多
关键词 自由孔流 bp神经网络 遗传算法 多层感知器
在线阅读 下载PDF
上一页 1 2 141 下一页 到第
使用帮助 返回顶部