期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ASSA-RBF联合算法的三元锂离子电池SOC估计 被引量:3
1
作者 刘齐 吴松荣 +3 位作者 邓鸿枥 张翰文 付聪 柳博 《电子测量技术》 北大核心 2024年第1期71-78,共8页
准确估计三元锂电池的荷电状态(SOC)是保障电动汽车安全稳定运行的基础。针对传统BP神经网络估计精度不高,而RBF神经网络也容易陷入局部最优的问题,提出一种基于自适应麻雀搜索算法与RBF神经网络联合的三元锂电池SOC估计方法。首先,对... 准确估计三元锂电池的荷电状态(SOC)是保障电动汽车安全稳定运行的基础。针对传统BP神经网络估计精度不高,而RBF神经网络也容易陷入局部最优的问题,提出一种基于自适应麻雀搜索算法与RBF神经网络联合的三元锂电池SOC估计方法。首先,对标准麻雀搜索算法进行改进,采用精英混沌反向机制初始化麻雀种群,采用柯西-高斯变异策略优化麻雀种群中跟随者位置更新公式;然后,使用改进后的麻雀搜索算法对RBF神经网络的初始权值和宽度参数进行寻优,以提升算法对SOC的估计精度;最后,基于三元锂电池的充放电实验数据进行模型验证。结果表明,动态应力测试工况下,所提联合算法模型SOC估计均方根误差为0.694%,平均百分比误差为3.15%,能很好的应用于三元锂电池SOC估计。 展开更多
关键词 三元锂电池 SOC估计 RBF神经网络 自适应麻雀搜索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部