期刊文献+
共找到298篇文章
< 1 2 15 >
每页显示 20 50 100
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断
1
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
基于算法优化极限学习机的香芋皮改性膳食纤维制备及其NO_(2)^(-)吸附量预测
2
作者 邓忠惠 谢微 《中国无机分析化学》 北大核心 2025年第6期889-897,共9页
在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜... 在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法(GWO)和海鸥算法(SOA)对ELM进行优化。使用训练数据集对优化后的ELM模型进行训练。使用测试数据集对模型进行验证,评估模型的性能指标。结果显示,5种优化后的ELM模型在各项性能指标上均优于初始ELM模型。在5种优化算法中,SSA-ELM模型表现最为显著,其绝对误差(MAE)、均方误差(MSE)、均方误差根(RMSE)、平均绝对百分比误差(MAPE)分别为0.023498、0.0007391、0.027186和0.037267%,是所有优化算法测试模型中最低值。在测试模型中,原始ELM模型的R^(2)为0.013291,而GA-ELM、PSO-ELM、SSA-ELM、GWO-ELM和SOA-ELM模型的R^(2)分别0.86709、0.98016、0.99971、0.99998和0.99969。这表明5种优化ELM模型具有更高的拟合度、更好的泛化能力和稳定性,且相对于原始ELM模型,R^(2)值有显著提升。优化后的ELM模型,可以快速、准确地预测不同工艺条件下香芋皮改性膳食纤维的NO_(2)^(-)吸附量,减少实验成本和时间,提高生产效率和产品质量,为实际应用提供可靠的预测工具。 展开更多
关键词 香芋皮改性膳食纤维 响应面法 极限学习 算法优化 预测
在线阅读 下载PDF
基于灰狼算法优化深度极限学习机的钢轨热处理性能预测模型
3
作者 蔡里批 李硕 丁敬国 《材料与冶金学报》 北大核心 2025年第2期162-170,共9页
为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learn... 为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learning machine,GWO-DELM)的钢轨热处理性能预测模型.先采用深度极限学习机(DELM)构建出工艺模型,而后,针对深度极限学习机中初始权值随机确定而引起的预测结果准确度较低的问题,利用灰狼优化算法(GWO)对初始权值进一步确定.结果表明:该模型在预测不同规格钢轨的抗拉强度时,95.80%以上样本点的预测误差集中在-20~20 MPa,在预测踏面布氏硬度时,95.73%以上样本点的预测误差集中在-8~8;与传统模型相比,GWO-DELM具有更优异的预测精度及泛化能力,可应用在热轧钢轨风冷处理的性能预测上,为热处理参数的选择提供参考. 展开更多
关键词 钢轨热处理 灰狼优化算法 深度极限学习 性能参数预测
在线阅读 下载PDF
基于“十二生肖”算法优化的加权极限学习机月径流预测
4
作者 韩艳 崔东文 《三峡大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
为提高月径流时间序列预测精度,改进加权极限学习机(WELM)预测性能,对比验证“十二生肖”算法在基准测试函数和实例目标函数上的优化效果,提出经验小波变换二次分解(EWT^(Ⅱ))技术-“十二生肖”算法-WELM月径流时间序列预测模型.首先,... 为提高月径流时间序列预测精度,改进加权极限学习机(WELM)预测性能,对比验证“十二生肖”算法在基准测试函数和实例目标函数上的优化效果,提出经验小波变换二次分解(EWT^(Ⅱ))技术-“十二生肖”算法-WELM月径流时间序列预测模型.首先,利用经验小波变换(EWT)对月径流时间序列进行分解处理,得到EWT_(1)、EWT_(2)两个分解分量;采用模糊熵(FuzzyEn)计算EWT_(1)、EWT_(2)分量的模糊熵值,利用EWT^(Ⅱ)对模糊熵值较大的EWT_(1)分量进行二次分解,得到EWT_(1-1)~EWT_(1-3)三个分量.其次,基于EWT_(1-1)~EWT_(1-3)、EWT_(2)分量训练集构建4个WELM输入层权值和隐含层偏差(超参数)优化的实例目标函数,同时选取6个基准测试函数作为对比验证函数,利用“十二生肖”算法分别对6个基准测试函数和4个实例目标函数进行极值寻优与对比分析.最后,建立EWT^(Ⅱ)-“十二生肖”算法-WELM模型,通过云南省南洞地下河月径流预测实例对12种模型进行验证.结果表明:“十二生肖”算法对6个基准测试函数寻优的总排名与对4个实例目标函数寻优的总排名不一致,总体上冠豪猪优化算法(CPO)、野狗优化算法(DOA)寻优效果较好,变色龙算法(CSA)、天牛须搜索算法(BAS)、自学羚羊迁徙算法(SAMA)寻优效果较差;“十二生肖”算法对4个实例目标函数寻优的总排名与12种模型预测精度总排名基本一致,表明“十二生肖”算法极值寻优能力越强,获得的WELM超参数越优,所构建的预测模型性能越好;EWT^(Ⅱ)-CPO/CSO/DOA/CapSA/WHO-WELM模型预测的E_(MAP)、E_(MA)、E_(RMS)分别在0.422%~0.485%、0.022~0.026m^(3)/s、0.028~0.032m^(3)/s之间,优于其他对比模型,具有更好的预测效果. 展开更多
关键词 月径流预测 经验小波变换 二次分解 “十二生肖”算法 加权极限学习 函数优化
在线阅读 下载PDF
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
5
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 优化算法 极限学习
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测
6
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习 改进粒子群优化算法
在线阅读 下载PDF
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:1
7
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合核极限学习 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:5
8
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习 小波包变换 超参数优化
在线阅读 下载PDF
基于改进鲸鱼算法优化极限学习机的无氟保护渣黏度预测
9
作者 王思嘉 曾凯 +3 位作者 陈波 钱俊磊 王杏娟 朱立光 《科学技术与工程》 北大核心 2024年第34期14614-14622,共9页
针对结晶器无氟保护渣黏度值预测复杂、预测精度低的问题,提出了一种基于改进鲸鱼优化算法的极限学习机模型并用于无氟保护渣黏度值预测。首先,构建无氟保护渣成分数据集,并对保护渣中成分与黏度值进行相关性分析;然后,利用改进Tent混... 针对结晶器无氟保护渣黏度值预测复杂、预测精度低的问题,提出了一种基于改进鲸鱼优化算法的极限学习机模型并用于无氟保护渣黏度值预测。首先,构建无氟保护渣成分数据集,并对保护渣中成分与黏度值进行相关性分析;然后,利用改进Tent混沌映射和反向学习策略初始化鲸鱼优化算法的种群,融合非线性收敛因子和自适应t分布变异策略提高算法对极限学习机中超参数的寻优能力;最后,对无氟保护渣数据集进行黏度值预测对比实验,验证了改进算法的有效性。结果表明:与反向传播神经网络(back propagation neural network, BPNN)、极限学习机(extreme learning machine, ELM)模型相比,平均绝对百分比误差平均降低了29.50%,在寻优精度、预测精度和稳定性方面取得较大提升。 展开更多
关键词 无氟保护渣 黏度预测 鲸鱼优化算法 极限学习
在线阅读 下载PDF
基于海马优化深层极限学习机的电力信息物理系统FDIA检测
10
作者 席磊 白芳岩 +3 位作者 王文卓 彭典名 陈洪军 李宗泽 《电力系统保护与控制》 北大核心 2025年第4期14-26,共13页
虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme lear... 虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme learning machine,DELM)的FDIA检测定位算法。首先,该算法将极限学习机和极限学习机自编码器相结合得到了具备强特征表达能力的DELM。然后,通过海马优化算法对DELM的偏置和输入权重进行择优,用于改善算法指标不稳定的问题。同时在捕食阶段引入精英余弦变异算法以提升海马的收敛速度与DELM的精度。最后,将系统量测数据作为输入特征,利用DELM得到节点状态标签,从而实现污染状态量的定位。通过在IEEE 14节点系统和IEEE 57节点系统进行大量仿真对比分析,验证了所提算法在准确率、精确率、召回率及F1值等检测定位性能方面均具有明显优势,能够实现FDIA的精确定位。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 海马优化算法 深层极限学习
在线阅读 下载PDF
MMC子模块故障诊断的改进沙猫群优化极限学习机方法
11
作者 张彼德 何恒志 +3 位作者 邵帅 邱杰 马俊梅 陈广 《电力科学与技术学报》 北大核心 2025年第1期245-255,共11页
为了实现对模块化多电平换流器(modular multilevel converter,MMC)子模块开关管的故障诊断,对沙猫群优化(Sand Cat swarm optimization,SCSO)算法进行改进,提出一种改进沙猫群优化(improved Sand Cat swarm optimization,ISCSO)算法优... 为了实现对模块化多电平换流器(modular multilevel converter,MMC)子模块开关管的故障诊断,对沙猫群优化(Sand Cat swarm optimization,SCSO)算法进行改进,提出一种改进沙猫群优化(improved Sand Cat swarm optimization,ISCSO)算法优化极限学习机(extreme learning machine,ELM)的故障诊断方法。该方法利用Cubic混沌映射、螺旋搜索及麻雀警戒机制对沙猫搜索的3个阶段进行改进和优化,以提高算法的收敛速度和搜索能力。通过在MATLAB/SIMULINK平台搭建模块化MMC模型,以子模块故障时的桥臂环流作为输入量,通过将ISCSO-ELM与不同算法优化后的ELM模型进行故障诊断效果对比。结果表明,所提方法能有效识别子模块故障,在MMC故障诊断方面具有可行性和优越性,故障诊断效果更好。 展开更多
关键词 模块化多电平换流器 子模块开路故障 沙猫群优化算法 极限学习 故障诊断
在线阅读 下载PDF
基于金枪鱼群算法优化极限学习机的混凝土抗压强度预测 被引量:6
12
作者 张博吾 耿秀丽 《计算机应用研究》 CSCD 北大核心 2024年第2期444-449,共6页
混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新... 混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新式仿生算法金枪鱼群算法优化极限学习机(TSO-ELM)的混凝土抗压强度预测方法。该方法通过对ELM隐藏层初始参数中的连接权值与偏置值使用TSO进行寻优,有效提升了ELM的预测准确度。在仿真实验部分,通过两组混凝土数据集对ELM的预测速度、TSO的寻优能力、TSO-ELM模型的泛化性逐一进行验证。结果表明,该方法可以有效提高预测的速度与精准度,迭代次数更少,同时具有良好的泛化性,为现场施工及时进行混凝土抗压强度的预测提供了一种新方法。 展开更多
关键词 混凝土 抗压强度 金枪鱼群优化算法 极限学习 软测量
在线阅读 下载PDF
基于学习型多策略改进鲸鱼算法的路径规划研究 被引量:2
13
作者 岳凡 艾尔肯·亥木都拉 刘拴 《组合机床与自动化加工技术》 北大核心 2025年第2期46-51,56,共7页
为解决机器人在路径规划中路径过长与后期寻优停滞的问题,提出了一种学习型多策略改进鲸鱼优化算法(reinforcement learning multi-strategy improvement whale optimization algorithm,RLMIWOA),并在欧式距离的基础上引入了障碍物信息... 为解决机器人在路径规划中路径过长与后期寻优停滞的问题,提出了一种学习型多策略改进鲸鱼优化算法(reinforcement learning multi-strategy improvement whale optimization algorithm,RLMIWOA),并在欧式距离的基础上引入了障碍物信息与拐点信息,构建了路径规划适应度函数。首先,引入自适应帐篷映射初始化,使得初始化种群更加均匀;其次,引入了非线性收敛策略平衡算法的开发和探索阶段;然后,通过采用非线性加权因子对最优个体进行扰动,避免了其他个体对最优个体的“盲从”;最后,通过采用强化学习结合ε-精英逐维反向学习策略和动态局部最优逃生策略,提高了算法的收敛效率和跳出局部最优的能力。实验结果表明:RLMIWOA算法可以高效地找到最优路径,在路径搜索方面具有显著的优势。 展开更多
关键词 路径规划 强化学习 鲸鱼优化算法 适应度函数 局部最优
在线阅读 下载PDF
鲸鱼算法改进极限学习机的葡萄酒品质评价研究 被引量:3
14
作者 窦力 郑崴 +1 位作者 李柏秋 李斐 《食品与机械》 CSCD 北大核心 2024年第6期62-68,共7页
[目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通... [目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型。[结果]与GA-ELM、PSO-ELM和传统的ELM模型相比,WOA-ELM的准确率最高,达到了0.9445,GA-ELM的准确率为0.9290,PSO-ELM的准确率为0.9061,传统的ELM方法准确率为0.8177。[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性。 展开更多
关键词 近红外光谱 极限学习 鲸鱼优化算法 特征波长 竞争性自适应重加权采样法
在线阅读 下载PDF
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测 被引量:5
15
作者 张代凤 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第7期16-24,共9页
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预... 准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预测研究。首先,利用WPT将三峡水库入库日径流时间序列分解为1个周期项分量和1个波动项分量;其次,利用DBO、GTO、MRA分别优化RELM输入层权值和隐含层偏差,建立WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型;最后,利用所建立的3种模型分别对入库日径流周期项分量和波动项分量进行预测和重构,并构建基于极限学习机(ELM)的WPT-DBO-ELM、WPT-GTO-ELM、WPT-MRA-ELM模型、基于BP神经网络的WPT-DBO-BP、WPT-GTO-BP、WPT-MRA-BP模型、未经优化的WPT-RELM、WPT-ELM、WPT-BP模型和未经分解的DBO-RELM、GTO-RELM、MRA-RELM模型作对比分析模型。结果表明:①WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型对三峡水库入库日径流预测的平均绝对百分比误差MAPE分别为0.512%、0.519%、0.762%,平均绝对误差MAE分别为54.05、55.97、86.76 m^(3)/s,均方根误差RMSE分别为84.99、84.81、128.18 m^(3)/s,决定系数DC≥0.9994,希尔不等系数TIC≤0.00517,预测效果优于其他12种模型,具有更高的预测精度和更好的泛化能力。②DBO、GTO、MRA能有效优化RELM网络参数,显著提高RELM预测性能。③引入正则化项的RELM可有效防止预测模型过拟合,提高模型的泛化能力,预测性能优于ELM、BP网络。④所构建的3种模型预测精度高、计算规模小,是一种有效的入库日径流时间序列预测模型。 展开更多
关键词 日径流预测 正则化极限学习 蜣螂优化算法 珍鲹优化算法 泥环算法 小波包变换 三峡水库
在线阅读 下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:4
16
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合核极限学习 超参数优化
在线阅读 下载PDF
基于改进非洲秃鹫算法优化极限学习机的船舶运动预测 被引量:1
17
作者 戚得众 吴云志 +1 位作者 丁璐 丁坦 《电子测量技术》 北大核心 2024年第5期54-60,共7页
针对船舶运动预测模型精度不高而造成预测结果误差大的问题,提出一种利用改进非洲秃鹫优化算法(IAVOA)优化模型参数的极限学习机(ELM)预测模型,对船舶运动状况进行预测。在初始化种群时引入Circle混沌映射,增加种群的多样性;加入自适应... 针对船舶运动预测模型精度不高而造成预测结果误差大的问题,提出一种利用改进非洲秃鹫优化算法(IAVOA)优化模型参数的极限学习机(ELM)预测模型,对船舶运动状况进行预测。在初始化种群时引入Circle混沌映射,增加种群的多样性;加入自适应算子,调整两类秃鹫对其他秃鹫的指引作用,提升算法的收敛速度和解的质量。利用IAVOA优化的ELM模型对船模水池试验运动数据进行预测,并采用均方根误差和平均绝对误差评判该预测模型,与现有其他启发式算法优化ELM模型比较,所提出的IAVOA-ELM具有更优的预测精度和泛化能力。 展开更多
关键词 极限学习 秃鹫优化算法 Circle混沌映射 自适应调整算子 船舶运动预测
在线阅读 下载PDF
基于深度信念极限学习机与卷积优化算法的洪水预报方法 被引量:1
18
作者 徐军杨 张奇伟 +3 位作者 蔡鹏 罗远林 张坚 张楚 《水电能源科学》 北大核心 2024年第8期48-52,共5页
针对洪水峰高量大、汇流时间短以及流域地貌复杂,导致洪水预报难度大和预报精度不理想的问题,提出一种基于深度信念极限学习机(DBN-ELM)和改进卷积优化算法(ICOA)的ICOA-DBN-ELM模型。以渭河上游北道水文站点2006~2020年的日径流数据作... 针对洪水峰高量大、汇流时间短以及流域地貌复杂,导致洪水预报难度大和预报精度不理想的问题,提出一种基于深度信念极限学习机(DBN-ELM)和改进卷积优化算法(ICOA)的ICOA-DBN-ELM模型。以渭河上游北道水文站点2006~2020年的日径流数据作为输入数据,并将该模型与BP、ELM、DBN-BP、DBN-ELM、COA-DBN-ELM模型进行对比。结果表明,所建立的ICOA-DBN-ELM模型有更好的预报精度,在洪水预报领域具有良好的应用前景。 展开更多
关键词 洪水预报 深度信念极限学习 参数优化 卷积优化算法
在线阅读 下载PDF
蚁群优化算法协同深度极限学习机的热连轧宽度预测模型
19
作者 李嘉林 高杰 丁敬国 《材料与冶金学报》 CAS 北大核心 2024年第5期497-504,共8页
热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM... 热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM网络中,以提高其预测精度和泛化能力.先利用数据预处理方法对原始数据进行异常值的剔除和数据归一化.然后,使用蚁群优化算法对DELM的隐藏层节点数、迭代次数进行优化,在隐藏层节点数达到95个、迭代次数为480次时,DELM模型的预测性能最佳,其在预测不同规格带钢平均宽度时,决定系数R^(2)达到0.9989,97.98%的样本点预测误差分布在-7~7 mm.应用结果表明,与传统的深度极限学习机(DELM)、卷积神经网络(CNN)等模型相比,ACO-DELM模型在预测精度和泛化能力上有明显的提升,可有效应用于热轧带钢的平均宽度预测. 展开更多
关键词 热连轧 蚁群优化算法 深度极限学习 宽度预测
在线阅读 下载PDF
基于自适应差分进化算法优化极限学习机的球磨机料位测量 被引量:6
20
作者 王芳 续欣莹 阎高伟 《仪表技术与传感器》 CSCD 北大核心 2015年第6期143-145,共3页
极限学习机在实际应用中具有学习速度快、训练误差小的优点,但其稳定性与泛化能力却较差。针对其缺点,将自适应差分进化算法引入极限学习机对其改进,利用自适应差分进化算法的全局寻优能力,求取训练误差较小时极限学习机的输入权值矩阵... 极限学习机在实际应用中具有学习速度快、训练误差小的优点,但其稳定性与泛化能力却较差。针对其缺点,将自适应差分进化算法引入极限学习机对其改进,利用自适应差分进化算法的全局寻优能力,求取训练误差较小时极限学习机的输入权值矩阵以及隐含层偏置矩阵,从而优化极限学习机。将优化后的极限学习机应用于球磨机料位测量,实验结果表明,优化后的极限学习机与传统极限学习机相比具有较高的测量精度和较好的稳定性。 展开更多
关键词 自适应差分进化算法 极限学习 测试误差 球磨料位测量
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部