期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
兼顾通信效率与效用的自适应高斯差分隐私个性化联邦学习 被引量:4
1
作者 李敏 肖迪 陈律君 《计算机学报》 EI CAS CSCD 北大核心 2024年第4期924-946,共23页
近年来,由于联邦学习中的通信参数(或梯度)会给参与方本地敏感数据带来重大的隐私泄露风险,联邦学习隐私保护引起了广泛的关注.然而,梯度交换频繁、数据分布异构、参与方本地硬件资源受限等一系列不可避免的因素给联邦学习隐私保护增加... 近年来,由于联邦学习中的通信参数(或梯度)会给参与方本地敏感数据带来重大的隐私泄露风险,联邦学习隐私保护引起了广泛的关注.然而,梯度交换频繁、数据分布异构、参与方本地硬件资源受限等一系列不可避免的因素给联邦学习隐私保护增加了挑战难度.为了以一种统一的方式同时有效地解决数据隐私、模型效用、通信效率以及参与方数据非独立同分布等四个方面的问题,本文提出了一种新的兼顾通信效率与效用的自适应高斯差分隐私个性化联邦学习(Communication-efficient and Utility-aware Adaptive Gaussian Differential Privacy for Personalized Federated Learning,CUAG-PFL)方法.具体而言,本文提出一种动态层级压缩模型梯度的方案先为通信模型梯度每一层动态生成特定的压缩率,再根据压缩率构造对应的确定性二进制测量矩阵去除梯度冗余信息.随后,通过同时优化裁剪阈值、敏感度和噪声尺度等隐私相关参数来对压缩的模型梯度执行自适应高斯差分隐私操作.此外,本文对CUAG-PFL进行了严格的隐私分析.为了验证CUAG-PFL在隐私、效用、通信效率以及个性化四个方面的优势,本文在CIFAR-10和CIFAR-100两个真实联邦数据集上进行了大量实验模拟、对比和分析,结果表明CUAG-PFL能够提高参与方本地数据隐私性、通信效率和模型效用,同时解决了数据非独立同分布的问题.特别地,即使在隐私预算仅为0.92且上行通信量减少68.6%时,CUAG-PFL因隐私保护和梯度压缩所引起的模型效用损失仅为1.66%. 展开更多
关键词 自适应高斯差分隐私 隐私-效用权衡 动态层级压缩 通信高效 个性化联邦学习 隐私计算
在线阅读 下载PDF
MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法 被引量:7
2
作者 孙继平 范伟强 《光子学报》 EI CAS CSCD 北大核心 2022年第3期13-27,共15页
为满足矿井视频监控需求,针对现有图像融合算法获取的融合图像存在伪目标、模糊目标、晕光遮挡目标等问题,提出了一种基于多尺度和自适应高斯差分变换,结合修正非线性单元和VGG-16的矿井双波段图像融合算法。设计了基于多尺度和自适应... 为满足矿井视频监控需求,针对现有图像融合算法获取的融合图像存在伪目标、模糊目标、晕光遮挡目标等问题,提出了一种基于多尺度和自适应高斯差分变换,结合修正非线性单元和VGG-16的矿井双波段图像融合算法。设计了基于多尺度和自适应高斯差分变换的源图像分解模型,将红外和可见光图像分解为基础图像和细节图像;构造了一种修正非线性单元函数,使红外基础图像的权值随可见光基础图像的灰度自动调节,并采用“加权平均”的基础图像融合策略,以获得消除光源干扰的融合基础图像;利用预训练的VGG-16网络模型提取细节图像的4层网络深度特征,获取4对具有不同网络深度特征的融合图像后,通过“极大值选择”方法得到融合细节图像;对融合基础图像和融合细节图像进行重构,获取最终的融合图像。实验结果表明:所提算法能够消除矿井下人工光源干扰,得到场景清晰、特征显著的融合图像,更符合人的视觉特性;同时,改善了异源图像的融合效率,有利于图像的进一步分析处理。与其他典型算法相比,该算法鲁棒性好,克服了传统算法难以提取图像深度特征的缺点,更易于消除光源干扰,获得更加全面、可靠和丰富的场景信息。 展开更多
关键词 视频监控 图像融合 自适应高斯差分 修正非线性单元 神经网络 深度特征 池化反运算
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部