直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive...直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive direct fast iterative filtering,ADFIF)方法,该方法基于瞬时频率波动能量差准则,自适应确定DFIF算法外循环每层迭代筛分过程中最优滤波区间调整参数。ADFIF方法能够自适应地将任意非线性和非平稳信号分解为若干个瞬时频率具有物理意义的近似窄带信号和一个趋势项之和。通过仿真信号和滚动轴承故障信号分析,将所提ADFIF方法与原DFIF、自适应局部迭代滤波、变分模态分解、经验模态分解等方法进行对比,结果表明,所提ADFF方法在抑制模态混叠和抗噪性方面具有一定的优势,且能提取出滚动轴承更多故障特征信息。展开更多
超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local...超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。展开更多
针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方...针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方式使得信号极值点的分布更均匀,有效地抑制模态混叠问题的同时,亦保证了算法分解的顺序性.详细介绍了EPALIF方法的原理,同时构建仿真信号,将此方法与EMD、EEMD、CEEMD和ALIF方法进行分析和对比.结果表明PEALIF在分解能力、抑制模态混叠和抗噪声干扰等方面都具有一定的优越性.最后,将此方法应用在双半内圈轴承故障诊断中,实验结果表明PEALIF方法能获取更突出且易于辨识的故障特征信息,证实了该方法应用在轴承故障诊断分析上的实用性.展开更多
文摘直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive direct fast iterative filtering,ADFIF)方法,该方法基于瞬时频率波动能量差准则,自适应确定DFIF算法外循环每层迭代筛分过程中最优滤波区间调整参数。ADFIF方法能够自适应地将任意非线性和非平稳信号分解为若干个瞬时频率具有物理意义的近似窄带信号和一个趋势项之和。通过仿真信号和滚动轴承故障信号分析,将所提ADFIF方法与原DFIF、自适应局部迭代滤波、变分模态分解、经验模态分解等方法进行对比,结果表明,所提ADFF方法在抑制模态混叠和抗噪性方面具有一定的优势,且能提取出滚动轴承更多故障特征信息。
文摘超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。
文摘针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方式使得信号极值点的分布更均匀,有效地抑制模态混叠问题的同时,亦保证了算法分解的顺序性.详细介绍了EPALIF方法的原理,同时构建仿真信号,将此方法与EMD、EEMD、CEEMD和ALIF方法进行分析和对比.结果表明PEALIF在分解能力、抑制模态混叠和抗噪声干扰等方面都具有一定的优越性.最后,将此方法应用在双半内圈轴承故障诊断中,实验结果表明PEALIF方法能获取更突出且易于辨识的故障特征信息,证实了该方法应用在轴承故障诊断分析上的实用性.