期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于自适应融合网络的跨域行人重识别方法 被引量:5
1
作者 郭迎春 冯放 +1 位作者 阎刚 郝小可 《自动化学报》 EI CAS CSCD 北大核心 2022年第11期2744-2756,共13页
无监督跨域的行人重识别旨在将从有标签的源域中学习到的知识迁移到无标签的目标域,具有实用性和有效性而得到广泛关注.基于聚类的跨域行人重识别可以生成伪标签并对模型进行优化使得其表现较其他方法更优,然而这类方法由于过于依赖聚... 无监督跨域的行人重识别旨在将从有标签的源域中学习到的知识迁移到无标签的目标域,具有实用性和有效性而得到广泛关注.基于聚类的跨域行人重识别可以生成伪标签并对模型进行优化使得其表现较其他方法更优,然而这类方法由于过于依赖聚类伪标签的准确性,忽略了对伪标签噪声的处理,导致噪声随着网络迭代而不断扩大,影响模型的鲁棒性.针对这个问题,提出了基于自适应融合网络的方法,利用双网络结构共同学习,并将学习到的知识进行融合得到融合网络;为了区分两个网络的学习能力,设计了自适应融合策略;同时,利用细粒度风格转换模块对目标域数据集进行处理,降低行人图像对相机变换的敏感度.在行人重识别基准数据集Market1501、DukeMTMC-ReID和MSMT17上,通过评估指标平均精度均值和Rank-n与主流的方法进行了对比实验,验证了该方法的有效性. 展开更多
关键词 跨域行人重识别 自适应融合网络 细粒度风格转换 深度学习
在线阅读 下载PDF
多尺度多层次信息自适应融合的逆半色调方法
2
作者 李梅 孔维轩 《包装工程》 北大核心 2025年第11期195-204,共10页
目的逆半色调方法是实现数字化文件管理和高精度图像识别的关键技术,通过现有的逆半色调方法恢复得到的图像存在图像内容缺失、图像细节再现模糊等问题。针对现有方法的不足,提出多尺度多层次信息自适应融合的逆半色调方法。方法首先,... 目的逆半色调方法是实现数字化文件管理和高精度图像识别的关键技术,通过现有的逆半色调方法恢复得到的图像存在图像内容缺失、图像细节再现模糊等问题。针对现有方法的不足,提出多尺度多层次信息自适应融合的逆半色调方法。方法首先,提出多尺度自适应深度网络,实现多尺度信息的提取;然后,采用稠密残差块与注意力机制相结合的形式实现图像细节信息的有效提取;最后,构建多信息自适应融合网络,将不同阶段恢复得到的图像内容信息与细节信息有效融合,从而得到高质量的逆半色调图像。实验在Set14、Urban100、Microsoft COCO等3个数据集上与最新的5种方法进行比较。结果实验结果表明,与现有方法相比,在客观评价方面,其峰值信噪比平均值提高了0.05∼5.51 dB,结构相似度平均值提高了0∼0.1;在主观评价方面,运用此方法得到的逆半色调图像去除半色调噪点更为彻底,恢复出的图像细节更好,在视觉上与原始图像更为相近。同时,对于处理256像素×256像素的图像,所提出的网络在GPU上的平均运行时间为0.13 s。结论所提出的多尺度多层次信息自适应融合模型可以得到更高质量的逆半色调图像。 展开更多
关键词 逆半色调方法 多尺度自适应深度网络 多信息自适应融合深度网络 半色调图像
在线阅读 下载PDF
RO-YOLOv9车辆行人检测算法 被引量:2
3
作者 廖炎华 万学俊 +1 位作者 赵周洲 潘文林 《计算机工程与应用》 北大核心 2025年第11期144-155,共12页
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a... 针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv9 小目标检测 双向与自适应尺度融合特征金字塔网络(BiASF-FPN) OR-RepN4 Shape-NWD
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部