期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
复杂场景下自适应注意力机制融合实时语义分割
1
作者 陈丹 刘乐 +2 位作者 王晨昊 白熙茹 王子晨 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3334-3342,共9页
实现高准确度和低计算负担是卷积神经网络(CNN)实时语义分割面临的严峻挑战。针对复杂城市街道场景目标种类众多、光照变化大等特点,该文设计了一种高效的实时语义分割自适应注意力机制融合网络(AAFNet)分别提取图像空间细节和语义信息... 实现高准确度和低计算负担是卷积神经网络(CNN)实时语义分割面临的严峻挑战。针对复杂城市街道场景目标种类众多、光照变化大等特点,该文设计了一种高效的实时语义分割自适应注意力机制融合网络(AAFNet)分别提取图像空间细节和语义信息,再经过特征融合网络(FFN)获得准确语义图像。AAFNet采用扩展的深度可分离卷积(DDW)可增大语义特征提取感受野,提出自适应平均池化(Avp)和自适应最大池化(Amp)构成自适应注意力机制融合模块(AAFM),可细化目标边缘分割效果并降低小目标的漏分率。最后在复杂城市街道场景Cityscapes和CamVid数据集上分别进行了语义分割实验,所设计的AAFNet以32帧/s(Cityscapes)和52帧/s(CamVid)的推理速度获得73.0%和69.8%的平均分割精度(mIoU),且与扩展的空间注意力网络(DSANet)、多尺度上下文融合网络(MSCFNet)以及轻量级双边非对称残差网络(LBARNet)相比,AAFNet平均分割精度最高。 展开更多
关键词 卷积神经网络 复杂城市街道场景 扩展的深度可分离卷积 自适应注意力机制融合 分割精度
在线阅读 下载PDF
融合标签知识的中文医学命名实体识别 被引量:2
2
作者 尹宝生 周澎 《计算机科学》 CSCD 北大核心 2024年第S01期128-134,共7页
医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学... 医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学领域命名实体识别模型很容易出现识别错误的情况。为解决这一难题,文中提出了一种融合标签知识的中文医学命名实体识别方法,即通过专业领域词典获得文本标签的释义后,分别将文本、标签及标签释义编码,基于自适应融合机制进行融合,有效平衡特征提取模块和语义增强模块的信息流,从而提高模型性能。其核心思想在于医学实体标签是通过总结归纳大量医学数据得到的,而标签释义是对标签进行科学解释和说明的结果,模型融入这些蕴含了丰富的医学领域内的先验知识,可以使其更准确地理解实体在医学领域中的语义并提升其识别效果。实验结果表明,该方法在中文医学实体抽取数据集(CMeEE-V2)3个基线模型上分别取得了0.71%,0.53%和1.17%的提升,并且为小样本场景下的实体识别提供了一个有效的解决方案。 展开更多
关键词 中文医学命名实体识别 标签知识 先验知识 自适应融合机制 小样本
在线阅读 下载PDF
基于多层特征融合的多光谱行人检测方法 被引量:2
3
作者 罗萍 王涛 彭云奉 《计算机工程与设计》 北大核心 2023年第5期1579-1585,共7页
针对行人检测模型在全天候场景下特征提取能力差、检测准确率低的问题,提出一种基于多层特征融合的多光谱行人检测方法。设计一种基于通道注意力机制的可见光与红外特征的融合方式,提升模型的特征融合效率;采用多层融合特征设计特征金... 针对行人检测模型在全天候场景下特征提取能力差、检测准确率低的问题,提出一种基于多层特征融合的多光谱行人检测方法。设计一种基于通道注意力机制的可见光与红外特征的融合方式,提升模型的特征融合效率;采用多层融合特征设计特征金字塔网络,提升模型的特征提取能力;引入自适应特征融合机制对检测层进行特征图尺度调整,降低尺度冲突对模型性能的影响。在KAIST数据集上进行实验,其结果表明,模型的检测性能有一定提升。 展开更多
关键词 行人检测 全天候场景 特征提取 多层特征融合 多光谱 通道注意力机制 特征金字塔网络 自适应特征融合机制
在线阅读 下载PDF
基于双分支网络的表面肌电信号识别方法
4
作者 王万良 潘杰 +1 位作者 王铮 潘家宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2208-2218,2229,共12页
针对目前表面肌电信号(sEMG)手势识别细节信息提取不充分,对相似手势区分困难的问题,提出基于加强二维化特征的双分支网络(ETDTBN)模型.该模型通过加强二维化方法生成二维特征图,使用多层卷积神经网络(ML-CNN)提取sEMG的空间特征,利用... 针对目前表面肌电信号(sEMG)手势识别细节信息提取不充分,对相似手势区分困难的问题,提出基于加强二维化特征的双分支网络(ETDTBN)模型.该模型通过加强二维化方法生成二维特征图,使用多层卷积神经网络(ML-CNN)提取sEMG的空间特征,利用双向门控循环单元(Bi-GRU)提取原始信号的时序特征.考虑到不同的特征对网络的影响程度不同,引入自适应特征融合机制对不同分支进行融合,强化有用特征并弱化无用特征,提高表面肌电识别的准确率.实验在电极偏移和不同受试者2种情况下对ETDTBN进行训练与测试,与主流的肌电手势识别模型进行对比.可知,ETDTBN的总体识别准确率分别为86.95%和84.15%,准确率均为最优,证明了该模型的有效性. 展开更多
关键词 表面肌电信号(sEMG) 手势识别 加强二维化特征 双分支网络 自适应特征融合机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部