期刊文献+
共找到555篇文章
< 1 2 28 >
每页显示 20 50 100
基于深度自适应K-means++算法的电抗器声纹聚类方法
1
作者 闵永智 郝大宇 +2 位作者 王果 何怡刚 贺建山 《电力系统保护与控制》 北大核心 2025年第8期1-13,共13页
在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹... 在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。 展开更多
关键词 750 kV电抗器 声纹 自适应算法 稀疏自编码器 深度自适应K-means++算法
在线阅读 下载PDF
融合自适应变异策略与差分进化算法的油藏自动历史拟合方法
2
作者 张金鼎 张凯 +2 位作者 张黎明 刘丕养 陈旭 《油气地质与采收率》 北大核心 2025年第2期152-162,共11页
差分进化算法作为一种经典的进化算法,具有全局搜索能力、便于实现、无需梯度等优势,在油藏自动历史拟合中广泛应用,但算法中参数的设置对历史拟合结果影响较大,在高维问题中存在着收敛停滞的问题。为解决上述难题,提出一种融合自适应... 差分进化算法作为一种经典的进化算法,具有全局搜索能力、便于实现、无需梯度等优势,在油藏自动历史拟合中广泛应用,但算法中参数的设置对历史拟合结果影响较大,在高维问题中存在着收敛停滞的问题。为解决上述难题,提出一种融合自适应变异策略与差分进化算法的油藏自动历史拟合方法。首先,基于主成分分析方法对油藏模型的高维参数进行降维,将降维后的参数作为差分进化算法中调整的参数,以压缩变量的搜索空间,提升算法搜索效率;其次,结合自适应变异策略与差分进化算法,借助于算法搜索过程中的历史经验指导当前种群的更新,当种群个体停止收敛时,则切换差分进化算法的变异策略,改变种群的迭代更新方式,以此避免油藏参数停止优化调整的情况;此外,为使更新后模型参数与先验分布特征保持一致,应用分位数变换策略转换更新后参数的分布情况,将非高斯分布的数据变换为高斯分布,使更新后的模型更加符合实际地质参数的约束条件。提出算法在三维油藏模型上进行测试验证,结果表明:相比传统的差分进化算法框架,改进的差分进化算法不仅能够提升历史拟合求解的收敛效果,而且反演的油藏模型参数更加符合实际地质特征,在相同的计算条件下,可获得更优的历史拟合模型,数据拟合效果更显著。 展开更多
关键词 油藏数值模拟 自动历史拟合 差分进化算法 自适应方法 分位数变换
在线阅读 下载PDF
自扰动和极性维度交互的自适应差分进化算法
3
作者 翟雪玉 杨卫中 《计算机科学》 北大核心 2025年第S1期629-642,共14页
针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimensi... 针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。 展开更多
关键词 差分进化算法 参数自适应 自引导扰动补偿 极性维度交互 多样性增强
在线阅读 下载PDF
基于聚类算法的星载ADS-B波束自适应调整方法
4
作者 向怡然 李松亭 陈利虎 《系统工程与电子技术》 北大核心 2025年第5期1680-1686,共7页
星载广播式自动相关监视(automatic dependent surveillance broadcast,ADS-B)技术有效地解决了地面基站无法覆盖全球空域的问题,但仍面临星地传播距离远、损耗大、波束覆盖目标多、信号冲突严重等挑战。针对部分子波束内信号冲突严重... 星载广播式自动相关监视(automatic dependent surveillance broadcast,ADS-B)技术有效地解决了地面基站无法覆盖全球空域的问题,但仍面临星地传播距离远、损耗大、波束覆盖目标多、信号冲突严重等挑战。针对部分子波束内信号冲突严重、飞机漏检概率高的现象,设计25阵元19子波束均匀分布的数字相控阵天线,提出基于聚类算法的子波束优化方法。首先对样本进行基于代表点聚类,再依据结果对波束指向和覆盖范围(或者覆盖半径)非线性优化,以期降低信号冲突提高飞机检测概率。仿真结果表明,飞机检测概率提高9%~13%,比现有研究算法计算时长缩短87%~95%,波束自适应算法品质因数提高85%~94%。 展开更多
关键词 星载广播式自动相关监视 数字相控阵多波束合成 波束自适应 算法
在线阅读 下载PDF
一种基于改进差分进化的K-Means聚类算法研究 被引量:2
5
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 K-MEANS算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 中心优化
在线阅读 下载PDF
自适应聚类中心个数选择:一种联邦学习的隐私效用平衡方法
6
作者 宁博 宁一鸣 +3 位作者 杨超 周新 李冠宇 马茜 《电子与信息学报》 北大核心 2025年第2期519-529,共11页
联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对... 联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对梯度数据添加噪声。然而在采用了相应的隐私技术来降低敏感数据泄露风险的同时,模型精度和效果因为噪声大小的不同也受到了部分影响。为解决此问题,该文提出一种自适应聚类中心个数选择机制(DP-Fed-Adap),根据训练轮次和梯度的变化动态地改变聚类中心个数,使模型可以在保持相同性能水平的同时确保对敏感数据的保护。实验表明,在使用相同的隐私预算前提下DP-Fed-Adap与添加了差分隐私的联邦相似算法(FedSim)和联邦平均算法(FedAvg)相比,具有更好的模型性能和隐私保护效果。 展开更多
关键词 联邦学习 差分隐私保护 梯度 自适应选择
在线阅读 下载PDF
自适应文化差分进化算法在洪灾聚类评价中的应用 被引量:2
7
作者 廖力 贺润松 李蕊 《水电能源科学》 北大核心 2014年第12期59-62,共4页
针对模糊聚类迭代(FCI)模型参数难以优化的问题,提出了一种自适应文化差分进化(ACDE)算法,该算法将差分进化(DE)算法纳入文化算法的框架,通过两个种群的独立演化及信息交流来提升算法的全局寻优能力,克服了DE算法存在的早熟收敛问题,进... 针对模糊聚类迭代(FCI)模型参数难以优化的问题,提出了一种自适应文化差分进化(ACDE)算法,该算法将差分进化(DE)算法纳入文化算法的框架,通过两个种群的独立演化及信息交流来提升算法的全局寻优能力,克服了DE算法存在的早熟收敛问题,进而利用ACDE算法来优化FCI模型的聚类中心矩阵,有效改善了FCI模型的聚类效果。对河南省洪灾聚类评价分析结果表明,该模型具有合理性及有效性。 展开更多
关键词 洪灾评价 模糊迭代模型 自适应差分进化算法 文化算法
在线阅读 下载PDF
自适应不完备多视角聚类
8
作者 陈梅 马学艳 +2 位作者 张弛 张锦宏 钱罗雄 《北京航空航天大学学报》 北大核心 2025年第4期1059-1073,共15页
高质量的完备初始图能够有效提高不完备多视角聚类的性能,缺失值填充不恰当会导致初始图丢失数据潜在的结构,同时,各视角的仿射图融合不完全会造成学习到的一致表征缺失视角间的互补信息。为此,提出自适应不完备多视角聚类(AIM)模型。... 高质量的完备初始图能够有效提高不完备多视角聚类的性能,缺失值填充不恰当会导致初始图丢失数据潜在的结构,同时,各视角的仿射图融合不完全会造成学习到的一致表征缺失视角间的互补信息。为此,提出自适应不完备多视角聚类(AIM)模型。在初始图构建中,AIM模型采用有效视角的相似度均值来填充对应位置的缺失值,以获取数据更加完整的潜在结构,同时引入稀疏约束来提高模型对噪声的鲁棒性;在图优化过程中,引入低秩约束捕获数据的全局结构,通过谱约束增强类内数据间的紧密性,使仿射图具有更清晰的块对角结构,并引入一致性约束最小化各视角的仿射图与一致表征之间的差异来捕获视角间的互补信息,得到具有高鉴别特征的一致鲁棒表征图。与9种不完备多视角聚类方法在真实和多种缺失率下仿真的不完备多视角数据集中进行实验对比,结果表明:AIM模型均获得了最好的聚类性能。 展开更多
关键词 自适应构图 低秩表示 图融合 算法 不完备多视角
在线阅读 下载PDF
基于区块链与模糊聚类算法的区域大数据分析技术研究
9
作者 何颖 《现代电子技术》 北大核心 2025年第6期52-56,共5页
金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算... 金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算法处理高维非线性数据能力弱的缺点,使用深度信念网络进行改进,进而提升模型的数据处理能力。隐私保护使用差分隐私保护算法,在不利用背景知识的前提下完成数据的保护,同时保证了数据的可用性。在实验测试中,将所提模糊聚类算法与常用的主流K-Means算法、DPC算法进行了对比,结果表明:所提算法的性能在所有对比算法中最优;与此同时,加入隐私保护算法后对聚类结果的影响保持在0.021以内,充分证明了该算法性能的优越性。 展开更多
关键词 模糊算法 区块链技术 异常数据识别 深度信念网络 差分隐私保护算法 区域数据分析
在线阅读 下载PDF
一种基于密度聚类的小生境差分进化算法 被引量:9
10
作者 张航 王伟 +2 位作者 郑玲 李丹丹 熊富强 《计算机工程与应用》 CSCD 北大核心 2008年第23期42-45,共4页
针对基本差分进化算法早熟收敛的缺陷,提出了一种基于密度聚类的小生境差分进化算法。该算法基于DE/rand/2/bin变异方式全局搜索能力强、鲁棒性好和DE/best/2/bin变异方式局部搜索能力强、收敛速度快的特点,首先初始化一个没有子种群的... 针对基本差分进化算法早熟收敛的缺陷,提出了一种基于密度聚类的小生境差分进化算法。该算法基于DE/rand/2/bin变异方式全局搜索能力强、鲁棒性好和DE/best/2/bin变异方式局部搜索能力强、收敛速度快的特点,首先初始化一个没有子种群的全局种群,再在全局种群中采用DE/rand/2/bin进行迭代搜索,并对其中的个体进行聚类,当聚类簇中的个体数目达到规定的最小规模时形成一个小生境子种群,然后在各子种群中采用改进的DE/best/2/bin进行迭代搜索并重新进行聚类,从而提高进化过程中种群的多样性,增强算法跳出局部最优的能力。仿真实验表明,该方法能显著提高算法的收敛速度和全局搜索能力,有效避免早熟收敛。 展开更多
关键词 早熟收敛 密度 小生境 差分进化 种群多样性
在线阅读 下载PDF
基于差分进化算法的模糊核聚类算法及其在故障诊断中的应用 被引量:4
11
作者 张新萍 张孝远 刘杰 《电力系统保护与控制》 EI CSCD 北大核心 2014年第17期102-106,共5页
针对模糊核聚类方法中,核函数参数的确定问题以及聚类结果的有效评价问题,提出采用差分进化算法进行核函数参数和聚类中心的同时寻优策略。并将Xie-Beni指标推广至核空间,设计了有效的适应度函数以实现聚类效果的提升。对所提出的方法... 针对模糊核聚类方法中,核函数参数的确定问题以及聚类结果的有效评价问题,提出采用差分进化算法进行核函数参数和聚类中心的同时寻优策略。并将Xie-Beni指标推广至核空间,设计了有效的适应度函数以实现聚类效果的提升。对所提出的方法进行数值试验,同时应用在电机轴承的故障诊断中,取得了不错的效果,验证了方法的可行性。 展开更多
关键词 模糊 核函数 差分进化算法 故障诊断
在线阅读 下载PDF
聚类问题的自适应杂交差分演化模拟退火算法 被引量:4
12
作者 苏清华 胡中波 熊一能 《计算机工程与应用》 CSCD 北大核心 2010年第23期41-43,78,共4页
针对K-均值聚类算法对初始值敏感和易陷入局部最优的缺点,提出了一个基于自适应杂交差分演化模拟退火的K-均值聚类算法。该算法以差分演化算法为基础,通过模拟退火算法的更新策略来增强全局搜索能力,并运用自适应技术来选择学习策略、... 针对K-均值聚类算法对初始值敏感和易陷入局部最优的缺点,提出了一个基于自适应杂交差分演化模拟退火的K-均值聚类算法。该算法以差分演化算法为基础,通过模拟退火算法的更新策略来增强全局搜索能力,并运用自适应技术来选择学习策略、确定算法的关键参数。实验结果表明,该算法能较好地克服传统K-均值聚类算法的缺点,具有较好的全局收敛能力,且算法稳定性强、收敛速度快,将新算法与传统的K-均值聚类算法以及最近提出的几个同类聚类算法进行了比较。 展开更多
关键词 分析 差分演化算法 模拟退火算法 自适应技术 K-均值算法
在线阅读 下载PDF
Weka平台上解决聚类的改进差分进化算法 被引量:4
13
作者 姜凯 左风朝 《计算机工程与设计》 CSCD 北大核心 2012年第2期591-594,600,共5页
针对K均值算法的缺陷,提出一种用于解决聚类问题的差分进化算法对聚类的准则函数进行优化,为了能够进一步增强算法的全局搜索能力,引入一种基于种群适应度方差的自适应策略来动态调整变异概率CR和规模因子F等参数,充分利用在Weka工具中... 针对K均值算法的缺陷,提出一种用于解决聚类问题的差分进化算法对聚类的准则函数进行优化,为了能够进一步增强算法的全局搜索能力,引入一种基于种群适应度方差的自适应策略来动态调整变异概率CR和规模因子F等参数,充分利用在Weka工具中的类和接口,并将新提出的算法嵌入到平台中。在Weka平台上将该算法与K均值算法在3个UCI数据集上进行比较。仿真实验结果表明,该算法能够有效克服K均值算法的缺陷,能够获得较高的聚类质量。 展开更多
关键词 自适应差分进化算法 适应度方差 K均值 WEKA平台
在线阅读 下载PDF
基于混合差分进化的滑动窗口数据流聚类算法研究 被引量:2
14
作者 任永功 胡志冬 杨雪 《计算机应用研究》 CSCD 北大核心 2014年第4期1009-1012,共4页
针对传统的基于滑动窗口的数据流聚类算法存在的算法执行效率低、聚类质量较差等缺点,提出了一种基于混合差分进化的滑动窗口数据流聚类算法。该算法将数据流聚类过程分为两个部分:在线的时序窗口数据信息微簇特征向量生成和离线阶段的... 针对传统的基于滑动窗口的数据流聚类算法存在的算法执行效率低、聚类质量较差等缺点,提出了一种基于混合差分进化的滑动窗口数据流聚类算法。该算法将数据流聚类过程分为两个部分:在线的时序窗口数据信息微簇特征向量生成和离线阶段的聚类优化。对在线生成的微簇进行微簇集合的更新与维护,利用改进的粒子群算法对离线的微簇数据信息进行适应度值的计算,将种群分为优势子种群和普通子种群,然后利用个体适应度值和平均适应度值的判别来生成当前个体环境的最优候选解,并迭代地对个体进行进化,输出具有最优适应度值的聚类集合,完成对数据流的聚类。仿真实验结果表明,算法在对数据流执行聚类时具有较高的执行效率,并且最后聚类的质量较好,算法实用性强。 展开更多
关键词 混合差分进化 滑动窗口 数据流
在线阅读 下载PDF
基于热点解和差分进化的多目标聚类集成算法 被引量:2
15
作者 李莉 李妍琰 《计算机工程与设计》 CSCD 北大核心 2014年第8期2912-2916,共5页
针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强... 针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强潜在最优区域的搜索;在后续集成操作中只采用热点解及其邻域个体,去除较差解对最终结果的影响。在优化过程中采用改进的差分进化算子提高全局寻优的能力,去除编码长度不一对算子使用的影响。对3组UCI数据的测试结果表明,该算法优于2种对比算法,其RI取值提高了0.0021~0.0524,FM取值提高了0.0134~0.0591。 展开更多
关键词 多目标 集成 热点解 差分进化 全局寻优
在线阅读 下载PDF
基于差分进化算法的图像聚类研究 被引量:1
16
作者 贾紫娟 杨淑莹 王光彪 《天津师范大学学报(自然科学版)》 CAS 2012年第2期53-55,共3页
将差分进化算法应用于图像聚类问题,对问题进行实数编码,采用群体智能模式实现问题解的搜索.利用差分进化算法的差分变异操作和群体分布特性有效提高算法的搜索能力,采用贪婪选择操作和竞争生存策略实现群体内个体之间的相互合作与竞争... 将差分进化算法应用于图像聚类问题,对问题进行实数编码,采用群体智能模式实现问题解的搜索.利用差分进化算法的差分变异操作和群体分布特性有效提高算法的搜索能力,采用贪婪选择操作和竞争生存策略实现群体内个体之间的相互合作与竞争,降低了进化操作的复杂性,并通过仿真实验证明了该算法的有效性. 展开更多
关键词 差分进化算法 群体智能 图像 优化问题
在线阅读 下载PDF
横向联邦学习中差分隐私聚类算法 被引量:1
17
作者 徐雪冉 杨庚 黄喻先 《计算机应用》 CSCD 北大核心 2024年第1期217-222,共6页
聚类分析能够挖掘出数据间隐藏的内在联系并对数据进行多指标划分,从而促进个性化和精细化运营。然而,数据孤岛造成的数据碎片化和孤立化严重影响了聚类分析的应用效果。为了解决数据孤岛问题的同时保护相关数据隐私,提出本地均分扰动联... 聚类分析能够挖掘出数据间隐藏的内在联系并对数据进行多指标划分,从而促进个性化和精细化运营。然而,数据孤岛造成的数据碎片化和孤立化严重影响了聚类分析的应用效果。为了解决数据孤岛问题的同时保护相关数据隐私,提出本地均分扰动联邦K-means算法(ELFedKmeans)。针对横向联邦学习模式,设计了一种基于网格的初始簇心选择方法和一种隐私预算分配方案。在ELFedKmeans算法中,各站点联合协商随机种子,以较小的通信代价生成相同的随机噪声,保护了本地数据的隐私。通过理论分析证明了该算法满足差分隐私保护,并将该算法与本地差分隐私K-means(LDPKmeans)算法和混合型隐私保护K-means(HPKmeans)算法在不同的数据集上进行了对比实验分析。实验结果表明,随着隐私预算不断增大,三个算法的F-measure值均逐渐升高;误差平方和(SSE)均逐渐减小。从整体上看,ELFedKmeans算法的F-measure值比LDPKmeans算法和HPKmeans算法分别高了1.7945%~57.0663%和21.2452%~132.0488%;ELFedKmeans算法的Log(SSE)值比LDPKmeans算法和HPKmeans算法分别减少了1.2042%~12.8946%和5.6175%~27.5752%。在相同的隐私预算下,ELFedKmeans算法在聚类质量和可用性指标上优于对比算法。 展开更多
关键词 横向联邦 差分隐私 本地扰动 可用性 K-MEANS算法
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
18
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊C均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
自适应分形聚类进化甄别算法
19
作者 闫光辉 董晓慧 +2 位作者 刘云 贺少领 马志程 《计算机科学与探索》 CSCD 2010年第7期662-672,共11页
数据流随时间演变具有突发性及随机性的特点,如何自适应、实时追踪这种变化是数据流挖掘面临的一个重要问题,完全由用户通过试探来甄别这种变化在实际中无法实现,同时也失去了数据流聚类进化追踪的现实意义。针对聚类变化自动追踪问题,... 数据流随时间演变具有突发性及随机性的特点,如何自适应、实时追踪这种变化是数据流挖掘面临的一个重要问题,完全由用户通过试探来甄别这种变化在实际中无法实现,同时也失去了数据流聚类进化追踪的现实意义。针对聚类变化自动追踪问题,考虑到现实的计算资源限制和处理速度要求,结合分形聚类、自适应采样技术与Chernoff不等式,提出了数据流聚类演变实时追踪算法,进行聚类演变的自动追踪;通过合成与实际数据集上的实验工作验证了算法的有效性。 展开更多
关键词 数据挖掘 进化 分形 自适应采样
在线阅读 下载PDF
基于双档案种群大小自适应方法的改进差分进化算法
20
作者 黄亚伟 钱雪忠 宋威 《计算机应用》 CSCD 北大核心 2024年第12期3844-3853,共10页
针对现有差分进化(DE)算法在处理种群多样性降低和局部最优问题时,种群大小改进方法的性能不足,提出一种基于双档案种群大小自适应方法(APSA)的差分进化算法(APDE)。首先,构建2个档案分别用于记录在先前进化中丢弃的个体和实验个体;其次... 针对现有差分进化(DE)算法在处理种群多样性降低和局部最优问题时,种群大小改进方法的性能不足,提出一种基于双档案种群大小自适应方法(APSA)的差分进化算法(APDE)。首先,构建2个档案分别用于记录在先前进化中丢弃的个体和实验个体;其次,根据种群分布状态变化衡量多样性变化,并在多样性下降时从档案中选择个体加入种群,从而提升种群的多样性并增强跳出局部最优的能力;最后,基于APSA方法,提出一种改进的DE算法——APDE。在CEC2017测试集和兰纳-琼斯势问题上的广泛测试结果表明,APDE算法在30个测试函数上的基于Friedman test的平均排名中优于其他5种DE算法,并在至少20%的测试函数上取得了显著提升;同时,APDE算法在解决势能最小化上也取得了最佳性能。 展开更多
关键词 差分进化算法 双档案 多样性度量 自适应种群大小 数值优化
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部