期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
1
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
快速自适应经验模态分解方法的基本原理及其性能评估 被引量:7
2
作者 周义 李鸿光 《振动与冲击》 EI CSCD 北大核心 2016年第3期14-19,共6页
经验模态分解是一种有效的信号分解方法,尤其是针对非平稳非线性信号。然而,随着研究的深入,学者们发现该方法中存在着诸多弊端。根据Bhuiyan的研究,提出了一种针对一维信号的快速自适应经验模态分解方法。通过大量的数值仿真,证明这种... 经验模态分解是一种有效的信号分解方法,尤其是针对非平稳非线性信号。然而,随着研究的深入,学者们发现该方法中存在着诸多弊端。根据Bhuiyan的研究,提出了一种针对一维信号的快速自适应经验模态分解方法。通过大量的数值仿真,证明这种方法不但能克服传统方法的弊端、得到高质量的分解结果,还能大幅度地提高计算效率。 展开更多
关键词 经验模态分解 快速自适应经验模态分解 数值仿真
在线阅读 下载PDF
基于快速自适应经验模态分解的高速经编机振动分析 被引量:1
3
作者 陈志昊 包文杰 +3 位作者 李富才 静波 黄朝林 孙建文 《纺织学报》 EI CAS CSCD 北大核心 2023年第4期204-211,共8页
针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模... 针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模态函数(IMF),然后计算各IMF分量与原信号的相关性,结合经编机运动特点,判断其中相关性最大的本征模态函数为机构运动分量并去除,最后将剩余分量重组实现结构振动信号的提取。将该方法应用于经编机振动故障诊断中,对动态振动数据进行处理,结合静态固有频率测试,成功提取出与实际故障现象相同的信号频率特征,判断出经编机在高转速下振动过大的原因,为后续经编机振动优化提供了参考。 展开更多
关键词 高速经编机 振动分析 自适应经验模态分解 相关性分析 故障诊断
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
4
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
基于自适应噪声完整聚合经验模态分解-极限学习机的短期血糖预测 被引量:6
5
作者 王延年 郭占丽 +1 位作者 袁进磊 李全忠 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第6期702-710,共9页
糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进... 糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进行分解,得到不同频段的血糖分量IMF(本征模态函数)和残余分量,以降低血糖时间序列的非平稳性;然后对各血糖分量IMF和残余分量分别构建极限学习机,并将各极限学习机的预测结果融合,获得患者未来血糖浓度的预测值,提高预测精度;在此基础上,进行低血糖预警。利用从河南省人民医院内分泌科采集的56例患者的数据进行模型检验,结果表明:与ELM模型和EMD-ELM模型相比,CEEMDAN-ELM短期血糖预测模型提前45 min的预测仍可达到较高预测水平(RMSE=0.205 1,MAPE=2.116 4%);低血糖预警虚警率和漏警率分别为0.97%和7.55%。血糖预测时间的延长,可以为医生和患者提供充足时间进行血糖浓度控制,提高糖尿病治疗的效果。 展开更多
关键词 血糖预测 低血糖预警 自适应噪声完整聚合经验模态分解 极限学习机
在线阅读 下载PDF
快速自适应二维经验模态分解在SAR目标识别中的应用研究 被引量:5
6
作者 胡媛媛 韩彦龙 《电光与控制》 CSCD 北大核心 2021年第8期40-43,87,共5页
针对合成孔径雷达(SAR)图像目标识别问题,提出基于快速自适应二维经验模态分解(FABEMD)的方法。FABEMD可实现对SAR图像的快速分解,获得描述目标低频至高频信息的多层次固态模函数(BIMF)。基于结构相似性指标剔除多层次BIMF中的噪声成分... 针对合成孔径雷达(SAR)图像目标识别问题,提出基于快速自适应二维经验模态分解(FABEMD)的方法。FABEMD可实现对SAR图像的快速分解,获得描述目标低频至高频信息的多层次固态模函数(BIMF)。基于结构相似性指标剔除多层次BIMF中的噪声成分,保留高鉴别力部分。分类阶段采用联合稀疏表示对保留的BIMF进行表征分类。基于MSTAR数据集对所提方法进行测试,结果验证了其性能优势。 展开更多
关键词 合成孔径雷达 目标识别 快速自适应二维经验模态分解 结构相似性 联合稀疏表示
在线阅读 下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:16
7
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 脑电图 眼电伪迹 独立成分分析 自适应噪声完备经验模态分解 小波
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
8
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应噪声集合经验模态分解 恒星日滤波
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
9
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取 被引量:2
10
作者 王淑青 罗平章 +2 位作者 胡文庆 柯洋洋 张家豪 《水电能源科学》 北大核心 2024年第6期198-202,216,共6页
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有... 针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 展开更多
关键词 水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取
在线阅读 下载PDF
一种基于模态分解和机器学习的锂电池寿命预测方法 被引量:11
11
作者 肖浩逸 何晓霞 +1 位作者 梁佳佳 李春丽 《储能科学与技术》 CAS CSCD 北大核心 2022年第12期3999-4009,共11页
锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动... 锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动分量里的噪音对模型预测能力的影响,且又不完全抛弃波动分量里的特征信息,本工作提出使用随机森林(RF)算法得到每个波动分量的重要性排序和数值,以此作为每个分量对原始数据解释能力的权重。然后将权重值和不同波动分量构建的神经网络模型得到的预测结果进行加权重构,进而得到锂离子电池的RUL预测。文章对比了单一模型和组合模型预测精度,加入了RF的组合模型预测精度让五种神经网络的表现都有进一步的提升。最后,对表现较好的两种网络——LSTM和GRU引入了简单编码解码(SED)的机制,让其更好地学习到序列数据全局时间上的特征和远程的依赖关系。以NASA数据集作为研究对象进行该方法的性能测试。实验结果表明,CEEMDAN-RF-SED-LSTM模型对电池RUL预测表现效果好,预测结果相比单一模型具有更低的误差。 展开更多
关键词 锂离子电池 寿命预测 自适应白噪声完整集成经验模态分解 随机森林 神经网络
在线阅读 下载PDF
基于二次分解和JSO-TCN模型的短期光伏功率预测
12
作者 钟璐 杨华 +4 位作者 李世林 亢丽君 马光文 朱燕梅 黄炜斌 《水力发电》 CAS 2024年第11期74-80,105,共8页
针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然... 针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然后分别计算各分量的样本熵,并通过K-means++聚类为高频、中频和低频3个分量,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解;最终将处理后的数据输入到时序卷积网络(TCN)中并采用水母优化算法(JSO)对TCN进行参数优选。以西南地区某光伏电站为例,相比于其他模型,本模型在3类指标上均具有优势,决定系数(R 2)为98.29%、平均绝对误差(MAE)为0.481 MW、均方根误差(RMSE)为0.674 MW。由此可知,基于二次分解和JSO-TCN模型预测精度高、误差小,能够为该地区电网调度提供参考。 展开更多
关键词 光伏功率 预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-means++聚类 水母优化算法 时序卷积网络
在线阅读 下载PDF
基于实时滑动分解的融合时空图卷积流量预测研究
13
作者 牛帅 王景升 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4002-4013,共12页
为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑... 为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑动分解方法,此方法使得训练集随着时间轴动态变化,在每次分解过程中使用的均是实时和历史信息并未使用未来信息,更加符合实时预测任务需求。紧接着,利用自适应噪声完备集合经验模态分解技术将交通流数据进行分解得到一系列本征模态函数分量,将分量分别按照邻近、日和周相关等时段构建多尺度输入以表达时序数据的时间相似性;然后,构建一个时空融合网络有向图,有向图由表示时间相似性的时间图和反映空间连通流向性的空间图组成,用以表达路网节点所包含的时空相似性信息;同时,在模型训练过程中通过引入时空注意力机制使得模型自适应为时空关系分配不同的权重以便关注相似性更强的关键节点来提高模型预测精度。最后,为了验证EASTGCN模型的稳定性和鲁棒性,分别设计了多因素输入实验和多步长对比实验,并在公开的数据集上进行了实例验证。研究结果表明,EASTGCN模型在多步长预测任务中指标增幅跨度最小且性能最稳定;多因素输入的EASTGCN模型在PEMS04数据集的MAE、RMSE指标上相对于单因素输入模型来说分别降低3.83%~27.03%、4.24%~12.77%,在PEMS08数据集的MAE、RMSE指标上降低0.91%~38.69%、0.07%~31.21%。总的来说,EASTGCN模型不论是在长期预测任务还是在预测精度上均有更好的表现,实时滑动分解方法为“分解+预测”组合模型提供了一种新的思路。 展开更多
关键词 流量预测 时空图卷积 自适应噪声完备集合经验模态分解 多尺度输入 实时滑动
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型
14
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
在线阅读 下载PDF
基于多特征提取的语音情感分类
15
作者 张宇哲 郭传杰 +3 位作者 靳淑雅 马驰远 苏煜 陶智勇 《声学技术》 北大核心 2025年第2期261-269,共9页
情感识别是计算机对人类情感感知过程的模拟,具有重要的研究意义和应用价值。传统的语音识别系统通常使用单一的特征提取方法,但这些方法有时会丢失语音情感信号中的重要信息,导致识别错误。因此,文章基于改进的完全集成噪声自适应经验... 情感识别是计算机对人类情感感知过程的模拟,具有重要的研究意义和应用价值。传统的语音识别系统通常使用单一的特征提取方法,但这些方法有时会丢失语音情感信号中的重要信息,导致识别错误。因此,文章基于改进的完全集成噪声自适应经验模式分解,提出了一种组合多特征提取方法来分类无语义情感语音信号。首先,利用基于改进的完全集成噪声自适应经验模式分解将一维情感语音信号分解得到多个内禀模式;然后,提取每个内禀模式的均值、方差、峰度、偏度、能量、中心频率、峰值幅度和排列熵等特征;最后,通过这些特征对愤怒、快乐、悲伤和无情感四种情感进行分类。研究表明,该方法在通过支持向量机8∶2的模型训练后,得到了88.52%的平均识别率,可为情感语音信号的识别工作提供重要参考。 展开更多
关键词 情感语音 自适应经验模态分解 特征提取 支持向量机
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
16
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
17
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
基于ICEEMDAN-CNN的斜拉桥损伤识别方法研究
18
作者 刘杰 耿亚飞 +1 位作者 杨俊 王麒麟 《石家庄铁道大学学报(自然科学版)》 2025年第2期23-29,共7页
针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验... 针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验模态分解(CEEMDAN)的基础上,依据标准差特性推算合适的噪声源进行迭代更新,动态调整海量数据中的噪声水平并分解得到本征模态函数(IMF)分量;随后对IMF分量逐个进行最小二乘法非线性拟合,计算各个分量的Hurst指数用以筛选最佳IMF分量,为1D-CNN提供高质量的数据输入;细化调整卷积层结构与参数优化1D-CNN,提高模型对海量数据的泛化能力与计算效率,经训练后得到斜拉桥损伤识别模型;利用斜拉桥基准有限元模型提取多种工况数据,对斜拉桥损伤识别模型进行仿真分析。结果表明,ICEEMDAN-CNN模型在仿真分析时损伤定位精度为99.84%,损伤定量的最大误差为2.94%。 展开更多
关键词 斜拉桥 损伤识别方法 海量数据 一维卷积神经网络 改进完全自适应噪声集合经验模态分解
在线阅读 下载PDF
基于改进CEEMDAN-BO-LSTM的短期电价预测 被引量:1
19
作者 秦昆 刘立群 +1 位作者 吴青峰 何俊强 《陕西科技大学学报》 北大核心 2025年第1期169-176,共8页
电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短... 电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短时记忆网络(LSTM)的短期电价预测模型.ICEEMDAN将原始数据分解为多个本征模态函数(IMF)和一个残差序列,然后将IMF分量重构为高频,中频和低频三个子序列,将子序列和残差序列分别与相关因素结合,重构为四个多维特征矩阵,输入BO-LSTM模型进行训练,最后得到预测结果.用西班牙国家电网公司Red Electric Espana运营数据进行算例分析,结果表明ICEEMDAN-BO-LSTM模型具有更高的准确度,在电价跳跃点和峰值点处预测结果表现出色,与其他方法相比预测效果更好,对能源企业和国家电力市场调控策略具有实用价值. 展开更多
关键词 电价预测 完全自适应噪声集合经验模态分解 贝叶斯优化 长短期记忆网络
在线阅读 下载PDF
基于CEEMDAN二次分解和LSTM的风速多步预测研究 被引量:36
20
作者 向玲 刘佳宁 +2 位作者 苏浩 胡爱军 朱泽宁 《太阳能学报》 EI CAS CSCD 北大核心 2022年第8期334-339,共6页
为了提高风速预测的准确性,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)二次分解和长短时记忆(LSTM)网络的风速多步预测方法。该方法首先应用变分模态分解(VMD)将原始风速序列进行一次分解,充分利用其分解后的残余分量并采用CEEM... 为了提高风速预测的准确性,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)二次分解和长短时记忆(LSTM)网络的风速多步预测方法。该方法首先应用变分模态分解(VMD)将原始风速序列进行一次分解,充分利用其分解后的残余分量并采用CEEMDAN方法进行二次分解;然后将分解后的所有子序列分别输入到LSTM模型中进行风速多步预测;最后将各模型输出结果进行叠加获得预测风速。以内蒙古某风电场实测数据为例进行建模和预测分析,结果表明所提出的风速多步预测模型具有较高的预测精度,具备实际应用的可行性。 展开更多
关键词 风速 预测 长短时记忆网络 二次分解 自适应噪声完备经验模态分解
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部