期刊文献+
共找到7,322篇文章
< 1 2 250 >
每页显示 20 50 100
短距光纤通信系统中基于神经网络的非线性均衡器 被引量:1
1
作者 赵晗祺 李娜 +5 位作者 吴斌 吴桂龙 陈一童 冯晓芳 何沛礼 李蔚 《中国光学(中英文)》 北大核心 2025年第1期114-120,共7页
为了实现对短距光纤数据通信系统接收端非线性损伤的低复杂度均衡,提出了一种基于全连接神经网络的接收端均衡算法。这是一种引入判决反馈结构的判决反馈神经网络。非线性畸变是由线性工作区与实验系统不匹配的光电探测器引入的,在此基... 为了实现对短距光纤数据通信系统接收端非线性损伤的低复杂度均衡,提出了一种基于全连接神经网络的接收端均衡算法。这是一种引入判决反馈结构的判决反馈神经网络。非线性畸变是由线性工作区与实验系统不匹配的光电探测器引入的,在此基础上实现了基于C波段直接调制激光器的56 Gbit/s PAM4信号的20 km传输验证实验,并对判决反馈神经网络和其他均衡方案的均衡性能进行了对比实验。实验结果表明,相比全连接神经网络,改进方案在传输距离为20 km时灵敏度提升2 dB。改进方案可以很好地均衡光电器件的非线性,且计算复杂度更低,具有很好的应用意义。 展开更多
关键词 短距光通信 光电器件非线性畸变 信号均衡 神经网络 判决反馈
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别 被引量:1
2
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
船用起重机自适应神经网络滑模防摆控制
3
作者 陈志梅 王艳芳 +2 位作者 朱东科 邵雪卷 张井岗 《上海海事大学学报》 北大核心 2025年第2期137-143,共7页
针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。... 针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。采用拉格朗日方法建立受海浪持续影响的船舶-起重机-负载复杂系统的动力学模型,并将其转换为欠驱动系统的标准形式;采用HSMC方法设计控制律,以补偿系统参数的摄动;通过ARBFNN逼近并补偿由外部非线性干扰引起的不确定上界扰动,并利用李雅普诺夫函数证明了系统的渐近稳定性。仿真结果表明,该方法在持续未知干扰下具有很强的鲁棒性,能够有效实现负载定位和消除摆动的双重目标。 展开更多
关键词 船用起重机 防摆控制 欠驱动系统 分层滑模控制(HSMC) 自适应径向基函数神经网络(ARBFNN)
在线阅读 下载PDF
基于神经网络ODE和非线性MPC的DEA建模与控制 被引量:1
4
作者 黄鹏 王亚午 +2 位作者 吴俊东 苏春翌 福岛 E.文彦 《自动化学报》 北大核心 2025年第1期186-196,共11页
针对介电弹性体驱动器(Dielectric elastomer actuator,DEA)建模与控制的挑战性问题,提出基于神经网络常微分方程(Ordinary differential equation,ODE)和非线性模型预测控制(Model predictive control,MPC)的DEA动力学建模与跟踪控制方... 针对介电弹性体驱动器(Dielectric elastomer actuator,DEA)建模与控制的挑战性问题,提出基于神经网络常微分方程(Ordinary differential equation,ODE)和非线性模型预测控制(Model predictive control,MPC)的DEA动力学建模与跟踪控制方法.首先,基于神经网络ODE建立DEA的动力学模型以描述其复杂的动态行为.然后,基于所建立的DEA动力学模型,设计非线性模型预测控制器实现其跟踪控制目标.最后,在所搭建的实验平台上进行一系列跟踪控制实验.在所有实验结果中,DEA的运动均能很好地跟踪目标轨迹,且相对均方根误差均不超过3.30%,说明了所提动力学建模与跟踪控制方法的有效性. 展开更多
关键词 介电弹性体驱动器 神经网络常微分方程 动力学建模 线性模型预测控制
在线阅读 下载PDF
基于自适应损失均衡梯度增强的物理信息神经网络微地震定位 被引量:1
5
作者 潘登 唐杰 +2 位作者 范忠豪 产嘉怡 彭婧妍 《石油地球物理勘探》 北大核心 2025年第3期618-630,共13页
微地震定位是微地震监测任务中的主要挑战,有助于分析水力压裂的效果。物理信息神经网络(PINN)可实现微地震定位,但PINN中多损失项的权衡对网络的训练起着重要作用。为此,文中提出了一种基于自适应损失均衡梯度增强的物理信息神经网络... 微地震定位是微地震监测任务中的主要挑战,有助于分析水力压裂的效果。物理信息神经网络(PINN)可实现微地震定位,但PINN中多损失项的权衡对网络的训练起着重要作用。为此,文中提出了一种基于自适应损失均衡梯度增强的物理信息神经网络的微地震定位方法。首先结合相对到时与程函方程的残差来形成组合损失函数;其次通过自适应项自动更新损失权重,同时加入梯度信息来增强网络;最后利用网络训练获得整个计算域的旅行时分布,并通过最小旅行时预测出震源位置。测试结果表明,该方法能够提高网络的训练稳定性和预测精度并获得较好的微地震定位效果。 展开更多
关键词 微地震 物理信息神经网络 相对到时 程函方程 自适应损失均衡梯度增强
在线阅读 下载PDF
基于物理信息神经网络的多介质非线性瞬态热传导问题研究
6
作者 陈豪龙 唐欣越 +2 位作者 王润华 周焕林 柳占立 《力学学报》 北大核心 2025年第1期89-102,共14页
文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利... 文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利用偏微分方程、初始条件、边界条件和子域间公共界面连续性条件的残差构建损失函数.通过自动微分算法计算偏微分方程中温度对各输入变量的偏导数.利用链式求导法计算损失函数对权重和偏差的梯度,再根据梯度下降法更新网络参数.为了加速网络收敛,在激活函数中引入训练参数,通过调节激活函数斜率,使网络具有自适应性.文章探讨了PINN在求解多介质非线性瞬态热传导问题中的适用性,并进一步讨论了不同激活函数、学习率、网络结构和损失函数中的各项权重等对PINN计算结果的影响.计算结果表明,PINN在求解多介质非线性瞬态热传导问题时仍具有较高的可靠性和较简洁的求解流程,且不需要对求解域进行人为的前处理,有一定工程应用可行性.文章通过系统的理论分析和数值验证,充分展示了PINN解决复杂热传导问题的可靠性. 展开更多
关键词 物理信息神经网络 线性瞬态热传导问题 多介质 自适应激活函数
在线阅读 下载PDF
自适应门控机制嵌入图神经网络的下一个POI推荐
7
作者 迟晋浙 刘纪平 +2 位作者 徐胜华 王勇 王琢璐 《测绘通报》 北大核心 2025年第7期90-96,共7页
下一个POI推荐在基于位置的社交网络中备受关注,旨在通过用户历史签到及时序信息精准推荐。但传统方法未考虑时序和图节点,学习效率低。本文将自适应门控机制分别嵌入地理图模块和顺序图模块,提出了自适应门控机制嵌入图神经网络的下一... 下一个POI推荐在基于位置的社交网络中备受关注,旨在通过用户历史签到及时序信息精准推荐。但传统方法未考虑时序和图节点,学习效率低。本文将自适应门控机制分别嵌入地理图模块和顺序图模块,提出了自适应门控机制嵌入图神经网络的下一个POI推荐方法。该网络主要由地理图模块、顺序图模块及语义联合模块3部分构成。其中,自适应地理图模块将自适应门控机制与图卷积神经网络结合,通过门控信号调整节点融合更新比重;自适应顺序图模块通过随机游走网络学习用户的访问偏好,并使用自适应门控机制根据目标任务属性提升相关偏好的比重;设计语义联合模块用于最大化地理图及顺序图模块的一致性分布,并使用软标签交叉熵损失函数优化联合框架的损失。为验证模型有效性,对国外公开数据集(Foursquare_NYC、Foursquare_TKY)及国内数据集(Microblog)进行试验。结果表明,本文提出的模型推荐精度均在85%以上,且相较于最先进的基线模型,精度提升2.97%~86.90%。 展开更多
关键词 自适应门控机制 下一个POI推荐 神经网络
在线阅读 下载PDF
微型位移传感器固有非线性神经网络校正研究
8
作者 华洪良 丁心一 +2 位作者 张静 吴小锋 廖振强 《兵器装备工程学报》 北大核心 2025年第1期175-181,共7页
微型碳膜位移传感器具有结构紧凑、可靠、低成本等诸多优点,在农业机械、机器人末端执行器、医疗手术器械等领域具有广阔的应用前景。由于碳膜厚度制造误差,导致微型碳膜位移传感器存在固有非线性,影响其测量精度。针对微型位移传感器... 微型碳膜位移传感器具有结构紧凑、可靠、低成本等诸多优点,在农业机械、机器人末端执行器、医疗手术器械等领域具有广阔的应用前景。由于碳膜厚度制造误差,导致微型碳膜位移传感器存在固有非线性,影响其测量精度。针对微型位移传感器固有非线性校正问题,采用神经网络方法,构建非线性校正模型,对传感器固有非线性进行校正。通过仿真与实验相结合的方法,从校正精度、实时解算速度2个维度,将神经网络非线性校正模型和现有PCM、BCM模型进行对比研究。研究结果表明,增加模型阶数,可以有效提高校正精度。对于BCM和神经网络非线性校正模型而言,三阶模型即可实现精度收敛。经过三阶PCM、BCM和神经网络非线性模型校正,传感器测量误差可分别降低46.1%、89.0%和89.6%。因此,神经网络非线性校正模型具有更高的校正精度。此时,PCM、BCM和神经网络非线性校正模型实时解算时间分别为0.48、0.49、0.85 ms,能够基本满足5 ms级高性能控制器应用需求。 展开更多
关键词 位移传感器 线性校正模型 神经网络方法 测量精度 实时解算
在线阅读 下载PDF
基于多元线性回归和反向传播人工神经网络预测离子液体的声速
9
作者 季常征 万仁 +2 位作者 时兆翀 彭昌军 刘洪来 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期158-165,共8页
离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体... 离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体电荷密度分布片段面积(Sσ)和空穴体积(VCOSMO)两个描述符,并分别采用多元线性回归(MLR)和反向传播人工神经网络(BP-ANN)构建了用于描述离子液体声速的线性QSPR模型u-MLR和非线性QSPR模型u-ANN,模型中包含了温度和离子液体相对分子量,所涉及的数据集包括171种离子液体的5 114个数据点。在总的离子液体声速数据集中,u-MLR和u-ANN的决定系数(R2)分别为0.970 6和0.999 5,平均绝对相对偏差(AARD)分别为1.59%和0.10%,均方根误差(RMSE)分别为30.68 m/s和4.12 m/s。结果表明,基于人工神经网络建立的u-ANN模型的预测效果明显优于基于线性回归方法建立的u-MLR模型的预测效果。 展开更多
关键词 声速 离子液体 人工神经网络 多元线性回归 定量结构-性质关系
在线阅读 下载PDF
基于RBF神经网络的光滑不确定模型自适应采样方法
10
作者 郑源 李艳 +2 位作者 高峰 张旭涛 杨勃 《计算机集成制造系统》 北大核心 2025年第8期2920-2929,共10页
由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将... 由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将其不确定度估计代入提出的考虑轮廓曲率影响的MaxCWVar信息标准中用于选择下一最优测点(NBP)。以叶片截面自由曲线为例,验证了该方法自适应采样性能的优越性。与其他自适应采样策略的对比表明,基于RBFNN的响应预测对于采样点位置确定具有很好的指导作用;与其他三个常用的NBP选择标准相比,根据MaxCWVar标准得到的采样点分布更为合理,能及时准确地跟随轮廓的几何特征变化,经样本密度与曲率之间的相关性分析得以验证。特别是对采样实时性有较高要求的情况下,所提出方法具有更好的重构精度和建模效率。研究成果对于探索快速、智能的复杂无模型光滑曲面重构方法具有启发意义。 展开更多
关键词 不确定模型 自适应采样 径向基函数神经网络 MaxCWVar信息标准 下一最优测点
在线阅读 下载PDF
基于分布式观测器的航天器姿态接管神经网络自适应控制
11
作者 骆轩宇 刘闯 岳晓奎 《宇航学报》 北大核心 2025年第8期1642-1653,共12页
针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线... 针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线性动力学模型的逼近;通过基于神经网络观测器的分布式状态观测器,解决了仅有部分卫星对目标进行测量的问题,实现了在模型未知情况下对组合体航天器的观测一致性;通过设计自适应补偿控制律,随执行机构故障调整控制参数,实现了对参考姿态运动的跟踪控制。将本文设计的控制方法应用于非合作航天器的姿态接管问题,仿真结果表明其能实现对组合体航天器姿态跟踪的精确控制。 展开更多
关键词 非合作航天器 径向基函数神经网络 自适应控制 分布式观测器 姿态接管控制
在线阅读 下载PDF
工业互联网中融入域适应的混合神经网络加密恶意流量检测
12
作者 张浩和 韩刚 +1 位作者 杨甜甜 黄睿 《信息安全研究》 北大核心 2025年第5期457-464,共8页
随着信息化技术在工控领域的快速发展,工业互联网逐渐成为网络攻击的重要目标,恶意流量检测显得尤为重要.然而,加密技术的普及使得攻击者可以轻松隐藏恶意通信内容,传统基于内容分析的流量检测方法已难以有效应对.提出一种基于混合神经... 随着信息化技术在工控领域的快速发展,工业互联网逐渐成为网络攻击的重要目标,恶意流量检测显得尤为重要.然而,加密技术的普及使得攻击者可以轻松隐藏恶意通信内容,传统基于内容分析的流量检测方法已难以有效应对.提出一种基于混合神经网络和域适应的加密恶意流量检测方案,融合ResNet网络、ResNext网络、DenseNet网络和相似度检测算法构建混合神经网络.在此基础上,加入域适应模块减少数据的偏差.通过对工业互联网公共数据集进行流预处理,在勿需解密流量的情况下从加密流量中提取深层次特征,使用混合神经网络输出一组充分利用各模型特长的更高维特征向量,随后采用域适应模块中的域分类器提升模型在不同的网络环境和时间段的稳定性和泛化能力.实验结果表明,提出的方案在加密恶意流量检测任务上表现出较好的性能和效率,提高了加密恶意流量检测的准确性. 展开更多
关键词 工业互联网 混合神经网络 加密恶意流量 相似度检测 适应
在线阅读 下载PDF
基于RBF神经网络自适应滑模控制技术的舰载机牵引车稳定性研究
13
作者 王阳 于鸿彬 《兵器装备工程学报》 北大核心 2025年第9期322-332,共11页
针对舰载机牵引车在舰船甲板上工作时受到海浪干扰而行驶失稳问题,设计了一种基于RBF神经网络的自适应滑模控制器。以舰载机牵引系统为研究对象,建立了舰载机牵引系统的动力学模型,利用RBF神经网络的学习能力和自适应特性对海浪环境下... 针对舰载机牵引车在舰船甲板上工作时受到海浪干扰而行驶失稳问题,设计了一种基于RBF神经网络的自适应滑模控制器。以舰载机牵引系统为研究对象,建立了舰载机牵引系统的动力学模型,利用RBF神经网络的学习能力和自适应特性对海浪环境下牵引车的未知干扰进行分析预测,对外界引起的不确定项和扰动量的上限进行自适应逼近,并通过构造Lyapunov函数导出自适应律,切换函数采用饱和函数代替符号函数,可以有效减弱趋近过程中产生的抖振。为验证该方法的稳定性,在Matlab/Simulink中搭建舰载机牵引系统运动控制仿真模型,将该控制器与普通滑模控制器进行对比分析。仿真结果表明:RBF神经网络自适应滑模控制器的整体控制效果明显优于普通滑模控制器的控制效果,使舰载机牵引车控制系统即使在海浪干扰环境下仍具有可靠的稳定性能,同时具有较强的抗干扰能力和良好的位置轨迹跟踪能力。 展开更多
关键词 舰载机牵引车 系统动力学模型 自适应滑模控制 RBF神经网络 稳定性
在线阅读 下载PDF
基于自适应双层无迹卡尔曼滤波神经网络的铝电解电流效率预测模型
14
作者 方小燕 姚立忠 +2 位作者 罗海军 张玉泽 易军 《控制理论与应用》 北大核心 2025年第3期579-589,共11页
针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无... 针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无迹卡尔曼滤波在线更新神经网络的权值和阈值;然后,在双层无迹卡尔曼滤波神经网络的状态变量均方误差中引入约束调节参数;同时,采用梯度下降法自适应调整比例调节参数,将其均方误差约束至较小的范围内,以此来削弱滤波递归计算过程中误差累积对模型的影响;最后,通过铝电解电流效率预测,验证了本文所提方法具有较高的精确度和稳定性. 展开更多
关键词 铝电解 自适应建模 双层无迹卡尔曼滤波 人工神经网络 电流效率
在线阅读 下载PDF
基于深度神经网络与状态预测器的无人飞行器自适应控制
15
作者 程喆坤 赵良玉 《固体火箭技术》 北大核心 2025年第5期799-806,共8页
集群飞行场景中广泛存在的非结构化不确定性会影响无人飞行器的控制品质,甚至导致其出现飞行安全问题。为了能够在存在非结构化不确定性的情况下实现良好的轨迹跟踪性能,提出了一种基于深度神经网络和状态预测器的自适应控制方法,利用... 集群飞行场景中广泛存在的非结构化不确定性会影响无人飞行器的控制品质,甚至导致其出现飞行安全问题。为了能够在存在非结构化不确定性的情况下实现良好的轨迹跟踪性能,提出了一种基于深度神经网络和状态预测器的自适应控制方法,利用深度神经网络的特征提取能力为非结构化不确定性设计特征向量,从而提高了控制系统的不确定性估计性能。基于非光滑Lyapunov稳定性理论推导出自适应律,保障了深度神经网络在控制系统中应用的稳定性。根据获得的估计值对不确定性进行补偿,实现了更好的轨迹跟踪和姿态控制效果。最后,数值仿真证明了所提出的方法提升了无人飞行器在非结构化不确定性影响下的轨迹跟踪精度,有效保障了无人飞行器集群飞行的稳定与安全。 展开更多
关键词 模型参考自适应控制 深度神经网络 状态预测器 非结构化不确定性
在线阅读 下载PDF
基于神经网络的多随机参数非线性悬架系统响应分析
16
作者 陈强强 周继磊 +1 位作者 于孟娜 韩道远 《机电工程》 北大核心 2025年第7期1403-1412,共10页
车辆悬架系统的生产制造误差会使得该悬架系统各个结构参数具有不确定性,同时作用于非线性悬架系统的路面激励也具有明显的随机性和时变性。针对这一问题,研究了不确定因素对多随机参数非线性悬架系统响应的影响。首先,采用了七自由度... 车辆悬架系统的生产制造误差会使得该悬架系统各个结构参数具有不确定性,同时作用于非线性悬架系统的路面激励也具有明显的随机性和时变性。针对这一问题,研究了不确定因素对多随机参数非线性悬架系统响应的影响。首先,采用了七自由度非线性车辆悬架系统动力学模型,构建了白噪声路面激励时域模型;然后,建立了一种基于粒子群优化的反向传播神经网络(BPNN-PSO)预测模型,基于神经网络的直接积分法(DPIM),展开了针对非线性悬架系统的随机动力方程及其相应求解策略的研究;最后,针对非线性悬架系统随机振动直接概率积分法,提出了一种基于MATLAB的分析程序,对不同等级路面激励和参数随机条件下,非线性悬架系统振动响应的均值和标准差进行了研究。研究结果表明:直接概率积分法与蒙特卡洛模拟相比,系统的时变概率密度处理时间成本降低,效率更高;车体质量对车体位移的影响显著,其标准差为0.2×10^(-3)m~0.5×10^(-3)m,轮胎刚度对车体位移的影响最小,其标准差约为0.1×10^(-3)m~0.25×10^(-3)m;悬架的弹簧刚度对车体加速度的影响最小,其标准差约为0.5×10^(-2)m/s^(2)~2×10^(-2)m/s^(2),车辆质量和轮胎刚度的随机性对车辆动态行为影响较大。 展开更多
关键词 直接概率积分法 白噪声路面 反向传播神经网络 线性车辆悬架系统 粒子群算法 路面不平度
在线阅读 下载PDF
神经网络优化非线性磁链的双三相PMSM无感控制
17
作者 赵化勇 田伟 吉敬华 《组合机床与自动化加工技术》 北大核心 2025年第4期129-132,139,共5页
针对中低速情况下双三相永磁同步电机无传感器控制精度低,非线性磁链观测器在静止和低速时稳定性差的问题,提出一种结合BP神经网络的离散型非线性磁链观测器。首先,结合电流方程构建非线性磁链观测器并利用欧拉离散法进行离散化;其次,采... 针对中低速情况下双三相永磁同步电机无传感器控制精度低,非线性磁链观测器在静止和低速时稳定性差的问题,提出一种结合BP神经网络的离散型非线性磁链观测器。首先,结合电流方程构建非线性磁链观测器并利用欧拉离散法进行离散化;其次,采用BP神经网络优化非线性磁链的固定增益,实现增益在线调节,同时提出自适应高频信号注入方法,解决了非线性磁链观测器受固定增益值限制观测误差大和低速情况下稳定性差的问题;最后,在MATLAB环境下搭建了仿真模型验证提出的算法,并且仿真结果显示新型观测器的位置误差减小了37.5%以上,收敛速度提升了50%以上,有效地抑制系统抖振,具有更强的鲁棒性。 展开更多
关键词 双三相永磁同步电机 矢量控制 离散型非线性磁链观测器 BP神经网络 高频信号注入
在线阅读 下载PDF
基于域适应物理信息神经网络的时间序列预测方法
18
作者 曹力丰 阎高伟 +2 位作者 肖舒怡 董珍柱 董平 《自动化学报》 北大核心 2025年第6期1329-1346,共18页
基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于... 基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于线性动力算子的域适应物理信息神经网络方法.首先通过历史工况数据建立线性动力算子神经网络模型,捕获多变量时间序列数据的动态特性.然后通过前向欧拉法对机理模型进行离散化,构造物理信息正则化项,促使模型服从机理约束.最后通过最大均值差异对历史工况和当前工况下隐藏层状态变量进行分布对齐,构建域适应损失,降低变工况下数据分布变化对模型的影响.在多个数据集上的实验表明,该方法可以有效提高模型预测精度和泛化性能. 展开更多
关键词 物理信息机器学习 概念漂移 适应 线性动力算子神经网络
在线阅读 下载PDF
自适应神经网络下舰船航速自动控制研究
19
作者 王珂 于隆 《舰船科学技术》 北大核心 2025年第14期155-158,共4页
针对船桨子系统变系数、非线性特性导致的航速控制难题,本文提出一种基于自适应神经网络的舰船航速自动控制方法,旨在提升航速控制精度。首先,分析螺旋桨推力、阻力与航速的关系;其次,采用自适应循环神经网络,设计一阶严格反馈控制系统... 针对船桨子系统变系数、非线性特性导致的航速控制难题,本文提出一种基于自适应神经网络的舰船航速自动控制方法,旨在提升航速控制精度。首先,分析螺旋桨推力、阻力与航速的关系;其次,采用自适应循环神经网络,设计一阶严格反馈控制系统,依据航速跟踪误差确定控制率,并根据航行环境和船舶状态动态调整控制参数,实现航速精确控制。实验结果表明,该方法能够精准控制舰船航速,使航行轨迹最大化接近期望轨迹,航迹角偏移接近于0,验证了其在航速控制中的高精度和稳定性。 展开更多
关键词 自适应神经网络 舰船航速 自动控制 控制率
在线阅读 下载PDF
固定翼无人机纵向姿态神经网络自适应滑模控制
20
作者 麻玥瑄 陆宇 朱威禹 《航空兵器》 北大核心 2025年第3期72-77,共6页
针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设... 针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设计的自适应律实时调整神经网络权值,实现对模型误差和外部干扰的有效补偿。同时,基于Lyapunov稳定性理论设计了固定翼无人机的纵向姿态滑模控制律,确保闭环系统的全局稳定性和有限时间收敛特性。仿真结果表明,与传统PID控制及滑模控制方法相比,本文方法在存在参数摄动和外部干扰的情况下,能够显著提高固定翼无人机纵向姿态控制系统的跟踪精度和鲁棒性能。 展开更多
关键词 固定翼 无人机 纵向姿态 神经网络 自适应 滑模控制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部