期刊文献+
共找到1,482篇文章
< 1 2 75 >
每页显示 20 50 100
一种基于自适应线性神经网络算法的永磁同步电机电流谐波提取和抑制方法 被引量:23
1
作者 王硕 康劲松 《电工技术学报》 EI CSCD 北大核心 2019年第4期654-663,共10页
永磁同步电机通常采用正弦波进行驱动和控制,由于气隙磁场的畸变和电压型逆变器的死区效应等因素的存在,使永磁同步电机电流波形含有大量的谐波而发生畸变,特别是在电机低速运行时更为严重。为了进一步提高永磁同步电机的电流控制性能,... 永磁同步电机通常采用正弦波进行驱动和控制,由于气隙磁场的畸变和电压型逆变器的死区效应等因素的存在,使永磁同步电机电流波形含有大量的谐波而发生畸变,特别是在电机低速运行时更为严重。为了进一步提高永磁同步电机的电流控制性能,抑制电流谐波,本文在传统矢量控制算法基础上,增加神经网络谐波电流环,通过自适应线性神经网络(ADALINE)算法实现对主要电流谐波的分解和提取,将所提取的电流谐波经过神经网络训练获得补偿电压值进行谐波注入,实现电流谐波的检测和抑制。通过仿真和实验结果证明,本文提出的控制策略可以有效提取并抑制电流谐波,降低电机转矩脉动。 展开更多
关键词 永磁同步电机 电流谐波提取 电流谐波抑制算法 自适应线性神经网络算法
在线阅读 下载PDF
基于物理信息神经网络的多介质非线性瞬态热传导问题研究
2
作者 陈豪龙 唐欣越 +2 位作者 王润华 周焕林 柳占立 《力学学报》 北大核心 2025年第1期89-102,共14页
文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利... 文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利用偏微分方程、初始条件、边界条件和子域间公共界面连续性条件的残差构建损失函数.通过自动微分算法计算偏微分方程中温度对各输入变量的偏导数.利用链式求导法计算损失函数对权重和偏差的梯度,再根据梯度下降法更新网络参数.为了加速网络收敛,在激活函数中引入训练参数,通过调节激活函数斜率,使网络具有自适应性.文章探讨了PINN在求解多介质非线性瞬态热传导问题中的适用性,并进一步讨论了不同激活函数、学习率、网络结构和损失函数中的各项权重等对PINN计算结果的影响.计算结果表明,PINN在求解多介质非线性瞬态热传导问题时仍具有较高的可靠性和较简洁的求解流程,且不需要对求解域进行人为的前处理,有一定工程应用可行性.文章通过系统的理论分析和数值验证,充分展示了PINN解决复杂热传导问题的可靠性. 展开更多
关键词 物理信息神经网络 线性瞬态热传导问题 多介质 自适应激活函数
在线阅读 下载PDF
基于改进的灰狼算法优化BP神经网络的入侵检测方法
3
作者 彭庆媛 王晓峰 +3 位作者 唐傲 华盈盈 何飞 刘建平 《现代电子技术》 北大核心 2025年第13期96-104,共9页
当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改... 当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改进的灰狼算法优化BP神经网络的入侵检测方法。改进的灰狼算法通过改变线性控制参数,以及在灰狼位置更新公式中加入反余切惯性权重策略,以扩展狼群的搜索范围,从而避免陷入局部最优解。利用改进的算法优化BP神经网络的初始权值和阈值,将优化的BP神经网络应用于入侵检测。实验结果表明,改进的灰狼算法具有更好的稳定性、寻优效率和寻优精度,改进的入侵检测方法不易陷入局部极小值,泛化能力强,预测精度高和可靠性好。 展开更多
关键词 线性控制参数 惯性权重 灰狼优化算法 BP神经网络 入侵检测 网络安全
在线阅读 下载PDF
改进鲸鱼算法构建反向传播神经网络粮食产量预测模型及效果分析
4
作者 赵晶晶 陈岩 《科学技术与工程》 北大核心 2025年第7期2748-2759,共12页
为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线... 为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线性惯性权重和最优邻域扰动策略改进鲸鱼优化算法,再将其最优解赋值给BP神经网络的权值和阈值,最终提高IWOA-BP的收敛速度和收敛精度。选取全国近45年粮食总产量和7种影响因素(有效灌溉面积、化肥施用量、农村用电量、农业机械总动力、粮食作物播种面积、受灾面积和农村人均消费支出)作为数据集,构建基于改进鲸鱼算法的反向传播神经网络粮食产量预测模型。多次实验表明,IWOA-BP模型在测试集上的表现均优于其他预测模型,包括长短期记忆网络(long short-term memory network,LSTM)预测模型、极限学习机(extreme learning machine,ELM)预测模型、基于鲸鱼优化算法的BP神经网络(WOA-BP)预测模型以及基于粒子群算法的BP神经网络(PSO-BP)预测模型。IWOA-BP模型和ELM模型相比,前者的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了77.12%、88.18%;和LSTM模型相比,前者的RMSE、MAPE分别降低了69.11%、47.36%;和WOA-BP模型相比,前者的平均绝对误差(mean absolute error,MAE)、RMSE和MAPE分别降低了43.78%、43.22%、45.96%。和PSO-BP模型相比,前者的MAE、RMSE、MAPE分别降低了89.67%、90.61%、90.82%。因此IWOA-BP预测模型的决定系数更高、预测误差更小且收敛速度更快,可有效地预测粮食产量,对于农业部门和相关政策制定者来说具有重要的技术参考价值。 展开更多
关键词 粮食产量 反向传播神经网络 鲸鱼优化算法 线性惯性权重 随机扰动策略
在线阅读 下载PDF
含齿隙与饱和电动舵机的自适应神经网络输出反馈控制方法
5
作者 朱泽军 王伟 +1 位作者 林时尧 纪毅 《兵工学报》 北大核心 2025年第S1期107-121,共15页
针对电动舵机控制器设计过程中的齿隙、输入饱和与状态信息不完全可测等问题,提出了一种基于自适应神经网络状态观测器的输出反馈控制方法。为刻画齿隙对系统动力学的影响,通过引入近似死区函数构建含齿隙的4阶伺服系统模型。针对状态... 针对电动舵机控制器设计过程中的齿隙、输入饱和与状态信息不完全可测等问题,提出了一种基于自适应神经网络状态观测器的输出反馈控制方法。为刻画齿隙对系统动力学的影响,通过引入近似死区函数构建含齿隙的4阶伺服系统模型。针对状态不完全可测的问题,设计一种基于自适应神经网络的状态观测器,实现了存在模型不确定性条件下的系统状态重构。在反步法框架下,利用双曲正切Lyapunov函数结合状态观测器输出构建了输出反馈控制器。针对可能出现的输入饱和,引入辅助滤波系统以补偿输入饱和的影响。基于Lyapunov理论证明了闭环系统中误差信号的有界性。通过构建多组仿真实验,验证了所设计控制方法的有效性。研究结果表明,所设计的控制方法能够抑制齿隙非线性对系统性能的影响,补偿输入饱和约束,并在状态不完全可测条件下实现舵面的精确跟踪控制。 展开更多
关键词 电动舵机 齿隙非线性 自适应神经网络状态观测器 输出反馈控制 控制输入饱和
在线阅读 下载PDF
基于神经网络的多随机参数非线性悬架系统响应分析
6
作者 陈强强 周继磊 +1 位作者 于孟娜 韩道远 《机电工程》 北大核心 2025年第7期1403-1412,共10页
车辆悬架系统的生产制造误差会使得该悬架系统各个结构参数具有不确定性,同时作用于非线性悬架系统的路面激励也具有明显的随机性和时变性。针对这一问题,研究了不确定因素对多随机参数非线性悬架系统响应的影响。首先,采用了七自由度... 车辆悬架系统的生产制造误差会使得该悬架系统各个结构参数具有不确定性,同时作用于非线性悬架系统的路面激励也具有明显的随机性和时变性。针对这一问题,研究了不确定因素对多随机参数非线性悬架系统响应的影响。首先,采用了七自由度非线性车辆悬架系统动力学模型,构建了白噪声路面激励时域模型;然后,建立了一种基于粒子群优化的反向传播神经网络(BPNN-PSO)预测模型,基于神经网络的直接积分法(DPIM),展开了针对非线性悬架系统的随机动力方程及其相应求解策略的研究;最后,针对非线性悬架系统随机振动直接概率积分法,提出了一种基于MATLAB的分析程序,对不同等级路面激励和参数随机条件下,非线性悬架系统振动响应的均值和标准差进行了研究。研究结果表明:直接概率积分法与蒙特卡洛模拟相比,系统的时变概率密度处理时间成本降低,效率更高;车体质量对车体位移的影响显著,其标准差为0.2×10^(-3)m~0.5×10^(-3)m,轮胎刚度对车体位移的影响最小,其标准差约为0.1×10^(-3)m~0.25×10^(-3)m;悬架的弹簧刚度对车体加速度的影响最小,其标准差约为0.5×10^(-2)m/s^(2)~2×10^(-2)m/s^(2),车辆质量和轮胎刚度的随机性对车辆动态行为影响较大。 展开更多
关键词 直接概率积分法 白噪声路面 反向传播神经网络 线性车辆悬架系统 粒子群算法 路面不平度
在线阅读 下载PDF
基于域适应物理信息神经网络的时间序列预测方法
7
作者 曹力丰 阎高伟 +2 位作者 肖舒怡 董珍柱 董平 《自动化学报》 北大核心 2025年第6期1329-1346,共18页
基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于... 基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于线性动力算子的域适应物理信息神经网络方法.首先通过历史工况数据建立线性动力算子神经网络模型,捕获多变量时间序列数据的动态特性.然后通过前向欧拉法对机理模型进行离散化,构造物理信息正则化项,促使模型服从机理约束.最后通过最大均值差异对历史工况和当前工况下隐藏层状态变量进行分布对齐,构建域适应损失,降低变工况下数据分布变化对模型的影响.在多个数据集上的实验表明,该方法可以有效提高模型预测精度和泛化性能. 展开更多
关键词 物理信息机器学习 概念漂移 适应 线性动力算子神经网络
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断 被引量:2
8
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 BP神经网络 变压器 故障诊断 线性惯性权重 纵横交叉策略
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:3
9
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子群优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
遗传算法与修正的自适应矩估计优化循环神经网络的心音分类方法 被引量:1
10
作者 吴全玉 刘美君 +2 位作者 范家琪 潘玲佼 陶为戈 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期202-208,226,共8页
针对传统的循环神经网络(RNN)在识别分类心音信号方面具有梯度爆炸、梯度消失和短期记忆的问题,该文提出了无需心音分段的结合遗传算法(GA)与修正的自适应矩估计(RAdam)优化RNN的心音分类模型。该模型的优势是将GA和RAdam优化器以串联... 针对传统的循环神经网络(RNN)在识别分类心音信号方面具有梯度爆炸、梯度消失和短期记忆的问题,该文提出了无需心音分段的结合遗传算法(GA)与修正的自适应矩估计(RAdam)优化RNN的心音分类模型。该模型的优势是将GA和RAdam优化器以串联的方式融合到RNN中,以达到改进RNN的作用。首先,利用GA的选择、变异和遗传操作,优化RNN的输入层节点数,获取心音特征向量的最优个体的初始解。其次,根据最优个体中的权重、偏置矩阵,赋予模型初始权值和阈值,获得初始权重最优解,整个模型共享参数。最后,联合改进的学习率自适应优化算法,优化RNN模型。结果表明,结合经典的梅尔(Mel)倒频谱系数方法提取心音信号的特征向量,心音信号分类准确率达到90.29%,相比于未优化的RNN模型,准确率提高了17.79%。 展开更多
关键词 遗传算法 自适应矩估计 循环神经网络 心音分类
在线阅读 下载PDF
基于深度神经网络的无线传感器网络数据异常识别方法 被引量:1
11
作者 毛华彬 熊志文 傅彦铭 《传感技术学报》 北大核心 2025年第8期1491-1498,共8页
在识别异常数据时,若存在数据丢失,后续会因时空变化而影响数据之间的关联性,影响识别效果。为此,针对无线传感器网络数据,基于深度神经网络设计了新的异常数据识别方法。在常规OptSpace算法中引入节点协作机制,根据利用节点间的协作关... 在识别异常数据时,若存在数据丢失,后续会因时空变化而影响数据之间的关联性,影响识别效果。为此,针对无线传感器网络数据,基于深度神经网络设计了新的异常数据识别方法。在常规OptSpace算法中引入节点协作机制,根据利用节点间的协作关系填补数据中的空缺值;采用相关性自适应处理算法和Kriging插值法重构、修正数据,降低时空变化的影响;将处理后的数据输入到深度神经网络中,通过卷积、池化与分类处理,输出识别结果。仿真结果表明:所提方法不存在识别盲区,识别通信受阻、连接异常、非法入侵、信息丢失4种异常时未出现错误。将数据采集量和数据量的差值与平均绝对误差的乘积作为分析指标,反映预测值误差与数据量间的关系,所提方法的指标值仅为5.90。 展开更多
关键词 信息与通信工程 数据异常识别 深度神经网络 OptSpace算法 数据填补 相关性自适应处理算法
在线阅读 下载PDF
基于改进鲸鱼算法优化神经网络的GPS高程拟合方法 被引量:4
12
作者 钱建国 徐志文 +3 位作者 赵玉国 郭洁 王志强 赵金来 《大地测量与地球动力学》 CSCD 北大核心 2024年第2期122-127,共6页
采取混沌映射和自适应惯性权重结合的策略对标准鲸鱼算法进行改进,从而提高算法的全局寻优能力和收敛速度,并针对BP神经网络的劣势,利用改进鲸鱼算法对BP神经网络进行优化处理。在此基础上建立改进鲸鱼算法优化BP神经网络的GPS高程异常... 采取混沌映射和自适应惯性权重结合的策略对标准鲸鱼算法进行改进,从而提高算法的全局寻优能力和收敛速度,并针对BP神经网络的劣势,利用改进鲸鱼算法对BP神经网络进行优化处理。在此基础上建立改进鲸鱼算法优化BP神经网络的GPS高程异常拟合预测模型,并通过两组不同地形特征工程中的GPS数据对模型进行验证。结果表明,利用改进鲸鱼算法优化的BP模型进行GPS高程拟合时可取得更高的精度和稳定性。 展开更多
关键词 改进鲸鱼算法 混沌映射 自适应惯性权重 高程拟合 BP神经网络
在线阅读 下载PDF
基于自适应模糊神经网络的反舰导弹非线性控制算法 被引量:1
13
作者 陈洁 潘长鹏 顾文锦 《弹箭与制导学报》 CSCD 北大核心 2007年第3期99-102,共4页
提出了一种综合运用动态逆、模糊神经网络和滑模控制的非线性控制方法。首先运用动态逆理论对非线性系统进行近似线性化,利用具有在线学习能力的模糊神经网络来抵消系统的误差,建立了基于自适应模糊神经网络的控制结构,根据李雅普洛夫... 提出了一种综合运用动态逆、模糊神经网络和滑模控制的非线性控制方法。首先运用动态逆理论对非线性系统进行近似线性化,利用具有在线学习能力的模糊神经网络来抵消系统的误差,建立了基于自适应模糊神经网络的控制结构,根据李雅普洛夫稳定理论导出了网络权值的自适应调整规则,用滑模控制和鲁棒控制分量保证了系统的鲁棒性。并将该非线性控制算法用于某型侧滑转弯导弹的控制系统设计。仿真结果表明,这种方法能有效消除扰动的影响,提高导弹过载控制系统响应的精度。 展开更多
关键词 线性控制 动态逆 模糊神经网络 自适应调节 滑模控制
在线阅读 下载PDF
基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术 被引量:1
14
作者 朱纬 王敏林 董雪明 《电子测量技术》 北大核心 2024年第8期189-194,共6页
基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术... 基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术。为了提高温度误差建模的进度,提高传统神经网络的逼近能力,通过自适应前向线性预测滤波器对建模用测角仪温度漂移数据进行预处理,并采用自适应小波回声神经网络建立温度漂移模型,能够避免传统神经网络结构设计的盲目性和局部最优等问题,增强了网络学习能力和泛化能力,并利用自适应律代替神经网络梯度进行网络训练,提升神经网络的逼近精度和收敛速度。实验结果表明,该模型可以提高光纤陀螺测角仪的测量精度和环境适应性,为光纤陀螺测角仪的性能优化和实际应用提供了可靠的技术支撑。 展开更多
关键词 测角仪 温度误差建模 小波回声神经网络 粒子群优化 自适应前向线性预测滤波器
在线阅读 下载PDF
线性再励的自适应变步长机器人神经网络路径规划算法 被引量:8
15
作者 禹建丽 成久洋之 Valeri.Kroumov 《燕山大学学报》 CAS 2002年第3期258-260.,共3页
研究己知障碍物形状和位置环境下的机器人全局路径规划问题。利用神经网络路径规划算法进行路径规划,为提高神经网络路径规划算法的收敛速度,引进了线性再励的自适应变步长算法。通过仿真实验,表明所给出的线性再励自适应变步长算法能... 研究己知障碍物形状和位置环境下的机器人全局路径规划问题。利用神经网络路径规划算法进行路径规划,为提高神经网络路径规划算法的收敛速度,引进了线性再励的自适应变步长算法。通过仿真实验,表明所给出的线性再励自适应变步长算法能够有效地加快路径规划的收敛速度。 展开更多
关键词 线性再励 自适应变步长机器人 神经网络 路径规划
在线阅读 下载PDF
基于改进BP神经网络的风洞天平静态校准研究
16
作者 郜明川 闵夫 +1 位作者 解真东 杨彦广 《实验流体力学》 北大核心 2025年第4期104-112,共9页
针对风洞天平静态校准中传统校准模型非线性误差较大的问题,采用BP神经网络(back propagation neural network)建立了天平校准模型。三分量天平的BP神经网络模型为典型三层神经网络(“3–7–3”结构);BP神经网络模型校准精准度满足天平... 针对风洞天平静态校准中传统校准模型非线性误差较大的问题,采用BP神经网络(back propagation neural network)建立了天平校准模型。三分量天平的BP神经网络模型为典型三层神经网络(“3–7–3”结构);BP神经网络模型校准精准度满足天平静态校准合格指标,轴向力和俯仰力矩分量校准性能优于传统模型,法向力分量校准性能则略低于传统模型。针对BP神经网络存在的不足,采用经混合策略改进的蝴蝶算法优化BP神经网络的初始权值和阈值,优化后的BP神经网络收敛精度和收敛速度得到提高。使用三分量应变天平校准数据进行了仿真实验,以天平输出信号值和天平加载载荷值作为输入和输出构建BP神经网络。传统校准模型、BP神经网络校准模型、蝴蝶算法优化BP神经网络校准模型的仿真实验结果对比表明:使用优化BP神经网络模型拟合天平校准公式,其校准性能比传统校准模型提高70%~90%,可有效消除传统校准模型非线性误差,显著提高天平静态校准精准度。 展开更多
关键词 风洞天平 静态校准 BP神经网络 蝴蝶算法 线性拟合
在线阅读 下载PDF
基于C-I-WOA-BP神经网络的钻压温度补偿方法
17
作者 武丹 张星 +2 位作者 王飞 仵磊 高国旺 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期90-97,共8页
为了提高小井眼随钻参数测量中钻压测量的准确性,补偿温度对应变片的影响,克服传统BP神经网络学习过程收敛速度慢、对初始值和偏置值敏感、学习率不稳定、容易陷入局部最小值的缺陷,提出一种混沌映射的自适应鲸鱼优化算法优化BP神经网络... 为了提高小井眼随钻参数测量中钻压测量的准确性,补偿温度对应变片的影响,克服传统BP神经网络学习过程收敛速度慢、对初始值和偏置值敏感、学习率不稳定、容易陷入局部最小值的缺陷,提出一种混沌映射的自适应鲸鱼优化算法优化BP神经网络的C-I-WOA-BP温度补偿模型。首先,采用混沌映射的方法优化传统鲸鱼算法(WOA)的初始种群方式;然后通过自适应权重调整优化WOA的收缩包围机制;再通过WOA算法优化BP神经网络的权重系数;最后,综合对比BP网络、CWOABP网络、IWOABP网络和C-I-WOA-BP网络的性能。结果表明,C-I-WOA-BP网络提高算法收敛速度,具有全局探索能力和局部开发能力,稳定性好,能有效降低温度对钻压参数测量的影响。 展开更多
关键词 BP神经网络 温度补偿 混沌映射 鲸鱼算法 自适应权重
在线阅读 下载PDF
基于DMOA-BP神经网络的催化裂化装置汽油产率预测研究
18
作者 王学深 潘艳秋 +1 位作者 王成宇 孙延吉 《石油炼制与化工》 北大核心 2025年第9期82-88,共7页
催化裂化是石油炼制过程中重油轻质化的重要工艺,建立催化裂化装置产品预测模型有利于优化工艺过程和建立智能化炼油厂。针对国内某炼油厂智能化建设的需求,构建了一种基于优化的BP神经网络的催化裂化装置汽油产率预测模型。通过数据清... 催化裂化是石油炼制过程中重油轻质化的重要工艺,建立催化裂化装置产品预测模型有利于优化工艺过程和建立智能化炼油厂。针对国内某炼油厂智能化建设的需求,构建了一种基于优化的BP神经网络的催化裂化装置汽油产率预测模型。通过数据清洗和最大信息系数相关性分析,从30个初始输入变量中筛选出与汽油产率关联性较强的12个输入变量,降维率达到60%。在此基础上,采用6种智能优化算法对12-8-1结构的BP神经网络的初始权重与阈值进行优化,并比较不同优化算法下的模型预测性能。结果表明,矮猫鼬算法优化的BP神经网络(DMOA-BP)预测效果最佳,其平均绝对误差、均方误差、平均绝对百分比误差均显著低于其他算法,且4次交叉验证的平均决定系数R^(2)为0.9889,因此选择DMOA-BP作为催化裂化装置汽油产率预测模型。该模型为炼油厂智能化生产提供了高精度、低复杂度的预测工具,对催化裂化装置优化运行具有指导意义。 展开更多
关键词 催化裂化 相关性分析 BP神经网络 矮猫鼬算法 线性 数据预处理
在线阅读 下载PDF
深度模糊神经网络的设计和预测
19
作者 魏呈彪 赵涛岩 +1 位作者 曹江涛 李平 《系统仿真学报》 北大核心 2025年第9期2200-2210,共11页
要:针对深度神经网络可解释性差,处理大数据回归预测问题时对模型的修正没有针对性,提出一种深度模糊神经网络(deep fuzzy neural network,DFNN)。DFNN在结构学习方面采用一种自适应模糊C均值聚类算法(adaptive fuzzy C-means,AFCM),通... 要:针对深度神经网络可解释性差,处理大数据回归预测问题时对模型的修正没有针对性,提出一种深度模糊神经网络(deep fuzzy neural network,DFNN)。DFNN在结构学习方面采用一种自适应模糊C均值聚类算法(adaptive fuzzy C-means,AFCM),通过计算引入的有效性函数确定模型的结构,即规则数和规则的前件参数;后件参数的辨识使用一种改进的灰狼优化算法(improved grey wolf optimization,IGWO),通过使用指数收敛因子替换GWO中的线性递减策略,并且使用结合动态权重更新的自适应位置更新策略,通过该算法对深度模糊神经网络的后件参数以及自适应模糊均值聚类中的初始化参数进行了优化。将DFNN和相关算法应用于Box-Jenkins燃气炉和短时交通流预测问题中,实验结果证明了提出的模型及算法的可行性。 展开更多
关键词 深度模糊神经网络 自适应聚类 灰狼算法 Box-Jenkins燃气炉 交通流预测
在线阅读 下载PDF
基于神经网络的稀疏二维FIR滤波器设计
20
作者 李怡 赵加祥 徐微 《计算机工程与设计》 北大核心 2025年第7期1841-1847,共7页
针对高性能二维线性相位有限脉冲响应(finite impulse response,FIR)滤波器设计,随着阶数增加导致计算和存储压力过大的问题,提出一种稀疏二维FIR滤波器设计的迭代方法。稀疏二维FIR滤波器设计问题被转化为神经网络的李雅普诺夫能量函... 针对高性能二维线性相位有限脉冲响应(finite impulse response,FIR)滤波器设计,随着阶数增加导致计算和存储压力过大的问题,提出一种稀疏二维FIR滤波器设计的迭代方法。稀疏二维FIR滤波器设计问题被转化为神经网络的李雅普诺夫能量函数最小化问题。在每次迭代中,利用加权Frobenius范数的正交匹配追踪(orthogonal matching pursuit,OMP)算法寻找滤波器中非零系数的位置,使用Hopfield神经网络计算非零系数。仿真结果表明,该方法能够有效增加二维FIR滤波器的稀疏度,稀疏效果优于已有的稀疏滤波器设计算法。 展开更多
关键词 霍普菲尔德神经网络 稀疏滤波器 线性相位 二维有限脉冲响应滤波器 弗罗贝尼乌斯范数 正交匹配追踪 迭代算法
在线阅读 下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部