基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的...基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的大小评定图像分量间相关度的方法,因存在大值噪声点,容易造成假相关,从而影响去噪效果。提出基于差异系数的稀疏度自适应K-SVD去噪算法,通过引入差异系数来平衡因噪声点造成的假相关问题,同时使用相关度均值作为阈值来自适应地产生稀疏度K,避免因给定不恰当的稀疏度而影响去噪效果的问题。在USC标准库上的实验结果表明,所提算法在去噪效果方面有一定的优越性。展开更多
由于传统子空间类算法在少快拍数、低信噪比(signal noise ratio,SNR)、信源相干等条件下波达方向(direction of arrival,DOA)估计精度低甚至无法估计,因此,研究压缩感知理论在DOA估计中的应用.针对稀疏度自适应匹配追踪算法在噪声环境...由于传统子空间类算法在少快拍数、低信噪比(signal noise ratio,SNR)、信源相干等条件下波达方向(direction of arrival,DOA)估计精度低甚至无法估计,因此,研究压缩感知理论在DOA估计中的应用.针对稀疏度自适应匹配追踪算法在噪声环境下无法有效估计以及选择大的初始步长会导致过估计的问题,在该算法的基础上进行改进,利用迭代残差的变化规律优化算法的迭代终止条件,同时通过对步长大小进行自适应调整来快速准确逼近信源稀疏度.仿真结果表明,所提算法具有估计精度高、运行速度快、对噪声有较好的鲁棒性等优势,促进实际情况下压缩感知与DOA估计的进一步融合.展开更多
文摘基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的大小评定图像分量间相关度的方法,因存在大值噪声点,容易造成假相关,从而影响去噪效果。提出基于差异系数的稀疏度自适应K-SVD去噪算法,通过引入差异系数来平衡因噪声点造成的假相关问题,同时使用相关度均值作为阈值来自适应地产生稀疏度K,避免因给定不恰当的稀疏度而影响去噪效果的问题。在USC标准库上的实验结果表明,所提算法在去噪效果方面有一定的优越性。
文摘由于传统子空间类算法在少快拍数、低信噪比(signal noise ratio,SNR)、信源相干等条件下波达方向(direction of arrival,DOA)估计精度低甚至无法估计,因此,研究压缩感知理论在DOA估计中的应用.针对稀疏度自适应匹配追踪算法在噪声环境下无法有效估计以及选择大的初始步长会导致过估计的问题,在该算法的基础上进行改进,利用迭代残差的变化规律优化算法的迭代终止条件,同时通过对步长大小进行自适应调整来快速准确逼近信源稀疏度.仿真结果表明,所提算法具有估计精度高、运行速度快、对噪声有较好的鲁棒性等优势,促进实际情况下压缩感知与DOA估计的进一步融合.