期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型
被引量:
4
1
作者
温廷新
陈依琳
《中国安全科学学报》
CAS
CSCD
北大核心
2022年第11期38-46,共9页
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等...
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等级岩爆样本;然后,基于粒子群优化(PSO)算法,引入自适应种群间距和差分进化(DE)算法中变异算子设计AHDPSO,利用AHDPSO优选ELM的输入层权值和隐藏层阈值,构建岩爆烈度等级预测模型;最后,采用国内外301组岩爆样本对模型训练、测试并与其他模型对比。研究表明:经HDO算法均衡岩爆数据集后,整体的预测准确率提高11.91%,且各等级的平均预测准确率均得到提高;基于HDO的AHDPSO-ELM岩爆烈度等级预测模型平均预测准确率为98.92%,均方误差为0.0108,预测精度优于其他对比模型。
展开更多
关键词
海林格距离过采样(HDO)
自适应
混合差分粒子群优化(AHDPSO)
岩爆烈度等级预测
极限学习机(ELM)
岩爆样本
变异算子
自适应种群间距
在线阅读
下载PDF
职称材料
题名
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型
被引量:
4
1
作者
温廷新
陈依琳
机构
辽宁工程技术大学工商管理学院
出处
《中国安全科学学报》
CAS
CSCD
北大核心
2022年第11期38-46,共9页
基金
国家自然科学基金资助(71371091)
辽宁省社会科学规划基金资助(L14BTJ004)。
文摘
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等级岩爆样本;然后,基于粒子群优化(PSO)算法,引入自适应种群间距和差分进化(DE)算法中变异算子设计AHDPSO,利用AHDPSO优选ELM的输入层权值和隐藏层阈值,构建岩爆烈度等级预测模型;最后,采用国内外301组岩爆样本对模型训练、测试并与其他模型对比。研究表明:经HDO算法均衡岩爆数据集后,整体的预测准确率提高11.91%,且各等级的平均预测准确率均得到提高;基于HDO的AHDPSO-ELM岩爆烈度等级预测模型平均预测准确率为98.92%,均方误差为0.0108,预测精度优于其他对比模型。
关键词
海林格距离过采样(HDO)
自适应
混合差分粒子群优化(AHDPSO)
岩爆烈度等级预测
极限学习机(ELM)
岩爆样本
变异算子
自适应种群间距
Keywords
Hellinger distance oversampling(HDO)
adaptive hybrid differential particle swarm optimization(AHDPSO)
prediction of rockburst intensity grade
extreme learning machine(ELM)
rockburst samples
mutation operator
adaptive population spacing
分类号
X936 [环境科学与工程—安全科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型
温廷新
陈依琳
《中国安全科学学报》
CAS
CSCD
北大核心
2022
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部