期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型 被引量:4
1
作者 温廷新 陈依琳 《中国安全科学学报》 CAS CSCD 北大核心 2022年第11期38-46,共9页
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等... 为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等级岩爆样本;然后,基于粒子群优化(PSO)算法,引入自适应种群间距和差分进化(DE)算法中变异算子设计AHDPSO,利用AHDPSO优选ELM的输入层权值和隐藏层阈值,构建岩爆烈度等级预测模型;最后,采用国内外301组岩爆样本对模型训练、测试并与其他模型对比。研究表明:经HDO算法均衡岩爆数据集后,整体的预测准确率提高11.91%,且各等级的平均预测准确率均得到提高;基于HDO的AHDPSO-ELM岩爆烈度等级预测模型平均预测准确率为98.92%,均方误差为0.0108,预测精度优于其他对比模型。 展开更多
关键词 海林格距离过采样(HDO) 自适应混合差分粒子群优化(AHDPSO) 岩爆烈度等级预测 极限学习机(ELM) 岩爆样本 变异算子 自适应种群间距
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部