随着可再生能源的大规模并网,电力系统频率调节面临前所未有的挑战。本研究提出了一种基于量子增强深度强化学习和时空图神经网络(quantum-enhanced deep reinforcement learning and spatio-temporal graph neural networks,QE-DRL-ST-...随着可再生能源的大规模并网,电力系统频率调节面临前所未有的挑战。本研究提出了一种基于量子增强深度强化学习和时空图神经网络(quantum-enhanced deep reinforcement learning and spatio-temporal graph neural networks,QE-DRL-ST-GNN)的混合储能系统自适应频率调节方法,旨在提高多时间尺度下的电网频率调节性能。该方法创新性地将量子计算与深度强化学习和图神经网络相结合,克服了传统方法在处理高维状态空间和复杂时空依赖性方面的局限性。QE-DRL-ST-GNN采用量子状态编码来表示系统状态,利用量子图的卷积提取时空特征,并通过量子变分算法优化强化学习策略。此外,本研究还设计了一种自适应量子电路生成机制,可以根据系统的动态特性自动调整量子电路结构。案例分析结果表明,与传统的量子增强深度强化学习(quantum-enhanced deep reinforcement learning,QE-DRL)方法相比,QE-DRL-ST-GNN方法在极端情况下频率偏差控制在0.05 Hz,而传统DRL方法为0.15 Hz,提高了66.67%;在调节时间方面,QE-DRL-ST-GNN方法在复杂场景中仅需1.67 s,比传统DRL方法缩短47%;与传统DRL方法的83%相比,QE-DRL-ST-GNN方法在极端情况下提高了13%。展开更多
【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定...【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。展开更多
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使...针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。展开更多
文摘随着可再生能源的大规模并网,电力系统频率调节面临前所未有的挑战。本研究提出了一种基于量子增强深度强化学习和时空图神经网络(quantum-enhanced deep reinforcement learning and spatio-temporal graph neural networks,QE-DRL-ST-GNN)的混合储能系统自适应频率调节方法,旨在提高多时间尺度下的电网频率调节性能。该方法创新性地将量子计算与深度强化学习和图神经网络相结合,克服了传统方法在处理高维状态空间和复杂时空依赖性方面的局限性。QE-DRL-ST-GNN采用量子状态编码来表示系统状态,利用量子图的卷积提取时空特征,并通过量子变分算法优化强化学习策略。此外,本研究还设计了一种自适应量子电路生成机制,可以根据系统的动态特性自动调整量子电路结构。案例分析结果表明,与传统的量子增强深度强化学习(quantum-enhanced deep reinforcement learning,QE-DRL)方法相比,QE-DRL-ST-GNN方法在极端情况下频率偏差控制在0.05 Hz,而传统DRL方法为0.15 Hz,提高了66.67%;在调节时间方面,QE-DRL-ST-GNN方法在复杂场景中仅需1.67 s,比传统DRL方法缩短47%;与传统DRL方法的83%相比,QE-DRL-ST-GNN方法在极端情况下提高了13%。
文摘【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。
文摘针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。