期刊文献+
共找到1,160篇文章
< 1 2 58 >
每页显示 20 50 100
融合自适应SSAE与神经网络算法的网络安全模型研究
1
作者 林金妹 韦冰东 《信息技术与信息化》 2025年第2期139-142,共4页
为提升网络安全防护的智能化与精准度,利用自适应SSAE与神经网络融合算法,优化设计网络安全模型。采用网络爬虫算法,采集网络运行数据以此作为模型输入值。从防护时间、风险容忍度等方面设置模型约束条件。以自适应堆叠稀疏自编码器和... 为提升网络安全防护的智能化与精准度,利用自适应SSAE与神经网络融合算法,优化设计网络安全模型。采用网络爬虫算法,采集网络运行数据以此作为模型输入值。从防护时间、风险容忍度等方面设置模型约束条件。以自适应堆叠稀疏自编码器和神经网络构建与融合,通过算法的学习迭代提取网络运行特征,根据提取特征与网络异常标准特征的匹配度,确定网络的异常状态与类型。根据网络异常检测结果,通过异常节点隔离、安全加固、访问控制3个步骤,实现模型的安全防御功能。通过模型测试实验得出结论:与传统模型相比,优化设计模型的网络攻击误检率和漏检率分别下降4.25%和3.55%,在模型作用下网络丢包率降低1.28%。 展开更多
关键词 自适应SSAE算法 神经网络算法 融合算法 网络安全 模型设计
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
2
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于BP神经网络的用户侧用电负荷自适应预测方法
3
作者 张传远 陈亚天 +2 位作者 高振伟 齐永忠 杨夏祎 《信息技术》 2025年第2期187-192,共6页
为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧... 为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧用电负荷残缺数据和误差数据进行修补。基于BP神经网络,采用粒子群算法对BP神经网络的初始权重和门限进行优化,实现用户侧用电负荷自适应预测。实验结果表明,文中方法的负荷预测结果更加接近于实际值,能够准确预测用户侧用电负荷。 展开更多
关键词 BP神经网络 用户侧 用电负荷 自适应预测 粒子群算法
在线阅读 下载PDF
基于SSA-ELM神经网络的室内可见光定位系统
4
作者 贾科军 牛振 +3 位作者 于凯 张志聪 彭铎 曹明华 《光通信研究》 北大核心 2025年第1期13-17,共5页
【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定... 【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。 展开更多
关键词 可见光通信 室内定位 极限学习神经网络 麻雀搜索算法
在线阅读 下载PDF
基于自适应学习率卷积神经网络的新型配电网源网荷储无功协调优化技术 被引量:5
5
作者 钱进宝 刘晓光 +2 位作者 蔡玺 刘熠 戴剑丰 《可再生能源》 CAS CSCD 北大核心 2024年第2期267-275,共9页
随着“双碳”目标的推进,分布式新能源接入电网的容量大幅度提升,配电网源网荷储协调优化策略是实现分布式新能源消纳的重要方法,其中无功优化能够保证电网安全稳定运行。文章提出了一种基于自适应学习率卷积神经网络的配电网源网荷储... 随着“双碳”目标的推进,分布式新能源接入电网的容量大幅度提升,配电网源网荷储协调优化策略是实现分布式新能源消纳的重要方法,其中无功优化能够保证电网安全稳定运行。文章提出了一种基于自适应学习率卷积神经网络的配电网源网荷储无功协调优化技术。首先以最小网络损耗和最低电压偏移为目标,构建无功优化模型;其次利用卷积神经网络强大的非线性拟合能力,挖掘出电网运行场景和无功调压设备、储能充放电策略之间的映射关系,引入自适应学习率的方式更新网络参数,提高了网络训练效率;再次通过控制无功调压设备和储能装置充放电情况协调分布式电源出力,实现电力系统无功电压主动优化控制;最后通过IEEE33节点电网模型进行了仿真验证。结果表明,文章所提的配电网源网荷储无功协调优化方法提高了电力系统电压调节能力,为配电网安全可靠运行奠定了良好基础。 展开更多
关键词 分布式新能源 源网荷储协调优化 无功优化 自适应学习 卷积神经网络
在线阅读 下载PDF
自适应学习率的小波神经网络逼近算法 被引量:1
6
作者 魏燕明 陈俊峰 《火力与指挥控制》 CSCD 北大核心 2008年第7期73-75,共3页
提出一种自适应学习率的小波神经网络算法,从根本上解决了小波神经网络学习率的取值和收敛速度慢的问题,并有效地克服了小波神经网络易陷入局部极小的缺点,仿真实验表明,提出的学习算法可靠,学习率能够随着网络的运行参数而自动变化,无... 提出一种自适应学习率的小波神经网络算法,从根本上解决了小波神经网络学习率的取值和收敛速度慢的问题,并有效地克服了小波神经网络易陷入局部极小的缺点,仿真实验表明,提出的学习算法可靠,学习率能够随着网络的运行参数而自动变化,无需任何人为调整,克服了小波神经网络学习率靠人为试算选取所带来的问题。采用该种改进算法用于非线性函数逼近明显优于同等规模的固定学习率的小波神经网络。 展开更多
关键词 神经网络 自适应学习 小波神经网络 函数逼近
在线阅读 下载PDF
基于域对抗神经网络的双模态燃烧室跨构型燃烧模态识别
7
作者 宋婷 刘和东 +2 位作者 黄玥 陈玉乾 尤延铖 《推进技术》 北大核心 2025年第2期129-144,共16页
双模态冲压发动机燃烧室在宽马赫飞行过程中会呈现不同燃烧模态来保持稳定工作,燃烧模态的准确识别对燃烧室乃至发动机的控制和稳定运行具有重要意义。基于域对抗网络的领域适应策略,提出了一种针对不同构型双模态燃烧室的燃烧模态识别... 双模态冲压发动机燃烧室在宽马赫飞行过程中会呈现不同燃烧模态来保持稳定工作,燃烧模态的准确识别对燃烧室乃至发动机的控制和稳定运行具有重要意义。基于域对抗网络的领域适应策略,提出了一种针对不同构型双模态燃烧室的燃烧模态识别方法。首次将域适应的解决思路应用于燃烧及流体的问题中,以提高双模态燃烧室跨域数据集模态识别模型的泛化性能。通过数值模拟得到三种构型燃烧室的数据集,利用原始构型数据集训练模型,对上凹腔扩张构型和下凹腔扩张构型的数据集验证其泛化性能,并将获得的识别准确率与其他识别方法(包括支持向量机、K近邻、决策树)进行对比分析。研究结果表明:对亚燃模态和超燃模态进行识别,在上凹腔扩张构型和下凹腔扩张构型的密度梯度分布图的验证中分别取得了93.5%和96.3%的准确率,在温度分布图的验证准确率为91.8%和97.1%。本文的方法可以获得更易于识别燃烧模态的图像信息,以获得更高的跨领域数据识别准确率和更好的泛化性能,为发展适用于不同构型双模态燃烧室的燃烧模态识别方法提供了有力支撑。 展开更多
关键词 双模态燃烧室 燃烧模态识别 自适应 对抗学习 神经网络
在线阅读 下载PDF
基于粒子群优化神经网络的机械臂跟踪控制
8
作者 屈晓宇 王家隆 《沈阳工程学院学报(自然科学版)》 2025年第1期48-54,共7页
针对智能消防机械臂在无人情况下的系统操作精度问题,提出基于粒子群优化RBF神经网络自适应的控制方法。首先,采用RBF神经网络自适应控制算法跟踪机械臂各关节的轨迹;其次,采用粒子群优化算法对RBF神经网络的权值进行更新,并重新构建RB... 针对智能消防机械臂在无人情况下的系统操作精度问题,提出基于粒子群优化RBF神经网络自适应的控制方法。首先,采用RBF神经网络自适应控制算法跟踪机械臂各关节的轨迹;其次,采用粒子群优化算法对RBF神经网络的权值进行更新,并重新构建RBF神经网络;最后,通过MATLAB仿真验证所提出控制器的有效性和可行性。结果表明:与一般RBF神经网络自适应控制器相比,粒子群优化RBF神经网络自适应控制器在路径跟踪上具有更高的控制精度。 展开更多
关键词 智能消防机械臂 神经网络 自适应 粒子群优化算法
在线阅读 下载PDF
基于混合优化算法和深度神经网络模型结合的致密砂岩气藏裂缝参数优化 被引量:1
9
作者 罗山贵 赵玉龙 +4 位作者 肖红林 陈伟华 贺戈 张烈辉 杜诚 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期140-151,共12页
水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且... 水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且依靠现场工程师经验和正交实验等传统方法难以获得最佳的裂缝参数设计。为此,建立了一种新的基于混合优化算法和自适应深度神经网络(DNN)结合的致密气藏裂缝参数优化方法。首先,混合优化算法采用遗传算法(GA)和贝叶斯自适应直接搜索(BADS)之间循环迭代的混合策略。在自适应学习过程中,提出了以“最大平均距离点”作为最不确定解,同时辅以最有希望解和少量拉丁超立方采样解共同更新优化过程中的DNN代理模型。随后,将建立的优化方法用于非均质致密砂岩气藏裂缝参数优化。研究结果表明:(1)在标准测试函数和低维裂缝参数优化问题上,GA+BADS混合优化算法表现出了显著优于GA的寻优速度;(2)针对高维裂缝参数优化问题,GA+BADS混合优化算法在约1/2的GA总数值模拟次数下提高了131万元的经济净现值(NPV),收敛速度和寻优精度都明显增加;(3)相比于GA+BADS混合优化算法,在获得相同NPV时,自适应DNN代理加速优化可再减少24.54%的数值模拟运算次数。结论认为,该优化方法显著提升了优化效率,为解决非常规油气藏中水力压裂裂缝参数设计问题提供了一套可行且高效的智能优化方法,将有力促进非常规油气的规模效益开发。 展开更多
关键词 致密气 沙溪庙组 裂缝参数优化 混合优化算法 深度神经网络 自适应学习 代理模型
在线阅读 下载PDF
基于图神经网络用于交通流预测研究综述
10
作者 解瑞航 《中国储运》 2025年第1期96-96,共1页
随着智能交通系统的发展,交通流预测成为一个关键问题。图神经网络(GNNs)作为一种强大的时空数据分析工具,近年来在交通流预测领域得到了广泛的应用。本文综述了GNNs在交通流预测中的应用,分析了其优势和存在的挑战,同时探讨了其未来可... 随着智能交通系统的发展,交通流预测成为一个关键问题。图神经网络(GNNs)作为一种强大的时空数据分析工具,近年来在交通流预测领域得到了广泛的应用。本文综述了GNNs在交通流预测中的应用,分析了其优势和存在的挑战,同时探讨了其未来可能的研究方向。由于城市化进程不断加剧和人口爆发式增长,交通网络的复杂性也随之不断增加。城市面临许多与交通相关的问题,包括空气污染和交通拥堵。基于交通预测的早期干预被视为提高交通系统效率和缓解交通相关问题的关键。传统的交通流预测方法通常依赖于统计模型和机器学习算法。然而,随着深度学习和GNNs技术的出现,研究者们开始探索新的方法来处理交通流预测中的复杂时空依赖关系。 展开更多
关键词 神经网络 机器学习算法 交通流预测 智能交通系统 深度学习 统计模型 空气污染 交通预测
在线阅读 下载PDF
BP神经网络预测农产品冷链物流需求量的优化分析
11
作者 孙娜 张己炳 《现代农业科技》 2025年第5期167-169,共3页
为实现对农产品冷链物流需求量的准确预测,通过引入自适应学习率和动量项优化BP网络,得到改进的BP神经网络。在此基础上,对该网络模型预测流程及模型最佳参数进行设计,使改进后模型的性能达到最优。采用BP神经网络、PCA-BP神经网络及改... 为实现对农产品冷链物流需求量的准确预测,通过引入自适应学习率和动量项优化BP网络,得到改进的BP神经网络。在此基础上,对该网络模型预测流程及模型最佳参数进行设计,使改进后模型的性能达到最优。采用BP神经网络、PCA-BP神经网络及改进的BP神经网络3种模型,对2020—2023年乌兰花镇冷链物流的需求量进行预测和对比分析,改进的BP模型平均相对误差仅为2.2%,为三者中最小。通过该模型对未来5年的乌兰花镇冷链物流需求量进行预测,并提出了相关发展建议。 展开更多
关键词 农产品冷链物流需求量 BP神经网络 自适应学习 动量项 模型优化 预测准确率
在线阅读 下载PDF
协同神经网络聚类型学习算法 被引量:20
12
作者 董火明 高隽 +1 位作者 陈定国 陈迎春 《合肥工业大学学报(自然科学版)》 CAS CSCD 2002年第4期492-495,共4页
协同神经网络是一类全新的神经网络 ,它可以根据竞争神经网络的一般原则划分为匹配子网和竞争子网。其中 ,匹配子网的学习是协同神经网络的一个中心问题。改善匹配子网的学习效率有 2种途径 :对伴随向量求解算法的改进和原型向量选取方... 协同神经网络是一类全新的神经网络 ,它可以根据竞争神经网络的一般原则划分为匹配子网和竞争子网。其中 ,匹配子网的学习是协同神经网络的一个中心问题。改善匹配子网的学习效率有 2种途径 :对伴随向量求解算法的改进和原型向量选取方法的改进。文章浅析了这 2种类型的学习算法 ,着重研究了聚类算法在原型向量选取中的应用 ,并以一组交通标志图像作为识别样本 ,验证了选取原型向量 2种思路的有效性。 展开更多
关键词 协同神经网络 学习算法 模式识别 匹配子网 学习效率 聚类算法
在线阅读 下载PDF
基于自适应BP神经网络的网络流量识别算法 被引量:17
13
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第4期580-585,共6页
针对新兴网络应用无法使用传统的基于端口与特征码进行识别的问题,对基于流量统计分析的网络协议识别方法进行了研究,提出了基于自适应BP神经网络的流量识别算法。对BP神经网络结构难以确定、易陷入局部极小值等缺陷进行了分析,使用双... 针对新兴网络应用无法使用传统的基于端口与特征码进行识别的问题,对基于流量统计分析的网络协议识别方法进行了研究,提出了基于自适应BP神经网络的流量识别算法。对BP神经网络结构难以确定、易陷入局部极小值等缺陷进行了分析,使用双粒子群算法对BP神经网络进行优化以提高识别率。实验表明,该算法能根据网络流量的统计特征有效地识别网络应用,且对于采用UDP协议的应用同样有较高的识别率,同时优化后的自适应BP神经网络训练时间更短;并能自动调整其结构,具有良好的自适应特性。 展开更多
关键词 自适应算法 神经网络 粒子群优化 统计特征 流量识别
在线阅读 下载PDF
基于模糊自适应变权重算法的函数链神经网络预测方法 被引量:8
14
作者 罗周全 左红艳 +1 位作者 王爽英 王益伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期2812-2818,共7页
为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟... 为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础上,结合模糊自适应变权重算法计算函数链神经网络权重,建立基于模糊自适应变权重算法的函数链神经网络预测模型。研究结果表明:基于模糊自适应变权重算法的函数链神经网络预测方法的预测精度较高,并且平均误差和预测平方根误差均较小,具有较强的泛化能力;该模糊自适应变权重函数链神经网络预测模型可用于复杂非线性工业系统决策。 展开更多
关键词 函数链神经网络 模糊自适应变权重算法 预测 模糊 神经网络
在线阅读 下载PDF
径向基函数神经网络的软竞争学习算法 被引量:11
15
作者 张志华 郑南宁 史罡 《电子学报》 EI CAS CSCD 北大核心 2002年第1期132-135,共4页
本文构造了径向基函数 (RBF)神经网络的一类软竞争学习算法 (SCLA) .该算法的主要思想是首先在高斯基函数中心向量的训练过程中引入了隶属度函数 ,对每个输入样本 ,所有中心向量根据该样本属于其代表的类的隶属度值的大小进行自适应地调... 本文构造了径向基函数 (RBF)神经网络的一类软竞争学习算法 (SCLA) .该算法的主要思想是首先在高斯基函数中心向量的训练过程中引入了隶属度函数 ,对每个输入样本 ,所有中心向量根据该样本属于其代表的类的隶属度值的大小进行自适应地调整 ;第二 ,把隶属度函数的模糊因子的倒数与模拟退火算法中的温度等同起来 ,在迭代过程中采用递增的方式来调整它 .SCLA是RBF网络基于k 均值方法训练中心向量的学习算法的软竞争格式 ,它可以克服后者对初始值敏感和死节点的问题 . 展开更多
关键词 神经网络 径向基函数 软竞争学习 算法
在线阅读 下载PDF
一种改进的前馈神经网络BP学习算法 被引量:14
16
作者 刘显德 崔浩然 +1 位作者 李盼池 许少华 《大庆石油学院学报》 CAS 北大核心 2003年第1期51-54,共4页
针对前馈神经网络收敛速度慢、易陷入局部极小问题 ,提出了一种改进的BP算法———变惯性因数和构造响应函数相结合的算法 .该算法在每一次校正连接权和阈值时 ,均按一定比例加上前一次学习时的校正量 ,同时构造出新响应函数 ,以提高网... 针对前馈神经网络收敛速度慢、易陷入局部极小问题 ,提出了一种改进的BP算法———变惯性因数和构造响应函数相结合的算法 .该算法在每一次校正连接权和阈值时 ,均按一定比例加上前一次学习时的校正量 ,同时构造出新响应函数 ,以提高网络收敛速度 .仿真实验证明了该算法的有效性 . 展开更多
关键词 改进 前馈神经网络 BP学习算法 变惯性因数 收敛性
在线阅读 下载PDF
RBF神经网络的混合学习算法 被引量:15
17
作者 苏小红 侯秋香 +1 位作者 马培军 王亚东 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第9期1446-1449,共4页
针对RBF神经网络的最近邻聚类学习算法存在的学习精度不理想和固定网络结构的梯度下降训练学习算法存在的中心不易确定、训练时间长等问题,提出一种基于最近邻聚类中心选取和梯度下降训练的RBF神经网络混合学习算法,解决了RBF网络径向... 针对RBF神经网络的最近邻聚类学习算法存在的学习精度不理想和固定网络结构的梯度下降训练学习算法存在的中心不易确定、训练时间长等问题,提出一种基于最近邻聚类中心选取和梯度下降训练的RBF神经网络混合学习算法,解决了RBF网络径向基函数的中心取值问题,提高了网络的学习精度和训练速度.将该算法应用于非线性系统的在线辨识与二维函数的逼近,仿真实验结果证明了该方法的有效性. 展开更多
关键词 RBF神经网络 最近邻聚类学习算法 径向基函数 梯度下降法
在线阅读 下载PDF
前向多层神经网络模糊自适应算法 被引量:12
18
作者 李松银 郑君里 《电子学报》 EI CAS CSCD 北大核心 1995年第2期1-6,共6页
本文将模糊集理论与人工神经网络的研究相结合,提出一种模糊自适应BP算法,用典型异或问题与规模更大的打印机磁泄漏信息识别问题进行计算机模拟表明,该算法可使BP算法的收敛速度明显提高。此项工作为神经网络与模糊系统相结合探... 本文将模糊集理论与人工神经网络的研究相结合,提出一种模糊自适应BP算法,用典型异或问题与规模更大的打印机磁泄漏信息识别问题进行计算机模拟表明,该算法可使BP算法的收敛速度明显提高。此项工作为神经网络与模糊系统相结合探索了一条新的途径。 展开更多
关键词 神经网络 前向多层 BP算法 模糊自适应算法
在线阅读 下载PDF
基于聚类法的协同神经网络学习算法 被引量:14
19
作者 王海龙 戚飞虎 《上海交通大学学报》 EI CAS CSCD 北大核心 1998年第10期39-41,共3页
根据协同学理论的基本观点(模式识别的过程即为模式形成的过程),对构造出的协同神经网络在模式识别中的应用进行了研究.发现伴随向量的性能直接影响到模式识别的成功率,而伴随向量是由原型向量计算得到.所以原型向量的选择对识别... 根据协同学理论的基本观点(模式识别的过程即为模式形成的过程),对构造出的协同神经网络在模式识别中的应用进行了研究.发现伴随向量的性能直接影响到模式识别的成功率,而伴随向量是由原型向量计算得到.所以原型向量的选择对识别结果有着十分重要的作用.提出了一种基于聚类算法的选择原型向量的方法.通过对近千个样本进行的模拟实验,结果证明这种基于聚类算法的原型向量选择方法很有效,使识别率有了较大的提高. 展开更多
关键词 协同神经网络 协同学习算法 聚类算法
在线阅读 下载PDF
基于SAPSO-BP神经网络的井下自适应定位算法 被引量:9
20
作者 莫树培 唐琎 +1 位作者 杜永万 陈明 《工矿自动化》 北大核心 2019年第7期80-85,共6页
针对基于传统BP神经网络的井下定位算法存在收敛速度慢、易形成局部极值、在煤矿井下强时变性电磁环境中定位误差大等问题,提出了一种基于模拟退火思想的粒子群优化算法加BP神经网络(SAPSO-BP)的井下自适应定位算法。采用SAPSO算法优化B... 针对基于传统BP神经网络的井下定位算法存在收敛速度慢、易形成局部极值、在煤矿井下强时变性电磁环境中定位误差大等问题,提出了一种基于模拟退火思想的粒子群优化算法加BP神经网络(SAPSO-BP)的井下自适应定位算法。采用SAPSO算法优化BP神经网络的初始权值和阈值,以加快训练收敛速度,使之到达全局最优;通过安装在井下巷道中的无线校准器采集目标点接收信号强度指示(RSSI)值,采用自适应动态校准方法对RSSI值进行实时校准,以减小强时变性电磁环境对定位精度的影响;最后利用SAPSO-BP神经网络估算出目标点位置坐标。实验结果表明,该算法的定位误差在2m内的置信概率为77.54%,平均误差为1.53m,定位性能优于未校准SAPSO-BP神经网络算法、PSO-BP神经网络算法、BP神经网络算法。 展开更多
关键词 井下人员定位 自适应定位 模拟退火思想的粒子群优化算法 SAPSO-BP神经网络 自适应动态校准
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部