期刊文献+
共找到3,187篇文章
< 1 2 160 >
每页显示 20 50 100
一种具有容错能力的自适应神经网络分类器 被引量:2
1
作者 邵栋 周志华 陈兆乾 《计算机研究与发展》 EI CSCD 北大核心 2001年第3期291-295,共5页
在国内外容错型神经网络研究的基础上 ,提出了一种具有容错能力的自适应神经网络 FTART4.该算法针对解决多点断路故障容错性的难点 ,提出了一种独特的增加网络冗余的方法 ,通过确定故障敏感点达到了冗余度与容错性的平衡 .同时对 FTART... 在国内外容错型神经网络研究的基础上 ,提出了一种具有容错能力的自适应神经网络 FTART4.该算法针对解决多点断路故障容错性的难点 ,提出了一种独特的增加网络冗余的方法 ,通过确定故障敏感点达到了冗余度与容错性的平衡 .同时对 FTART4神经网络解决多点断路故障问题进行了严谨的形式化分析 ,给出了 FTART4算法的完整描述 .采用通用的神经网络测试数据对算法进行了测试 。 展开更多
关键词 冗余 断路故障 自适应神经网络分类器 容错
在线阅读 下载PDF
船用起重机自适应神经网络滑模防摆控制
2
作者 陈志梅 王艳芳 +2 位作者 朱东科 邵雪卷 张井岗 《上海海事大学学报》 北大核心 2025年第2期137-143,共7页
针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。... 针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。采用拉格朗日方法建立受海浪持续影响的船舶-起重机-负载复杂系统的动力学模型,并将其转换为欠驱动系统的标准形式;采用HSMC方法设计控制律,以补偿系统参数的摄动;通过ARBFNN逼近并补偿由外部非线性干扰引起的不确定上界扰动,并利用李雅普诺夫函数证明了系统的渐近稳定性。仿真结果表明,该方法在持续未知干扰下具有很强的鲁棒性,能够有效实现负载定位和消除摆动的双重目标。 展开更多
关键词 船用起重机 防摆控制 欠驱动系统 分层滑模控制(HSMC) 自适应径向基函数神经网络(ARBFNN)
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别
3
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
自适应门控机制嵌入图神经网络的下一个POI推荐
4
作者 迟晋浙 刘纪平 +2 位作者 徐胜华 王勇 王琢璐 《测绘通报》 北大核心 2025年第7期90-96,共7页
下一个POI推荐在基于位置的社交网络中备受关注,旨在通过用户历史签到及时序信息精准推荐。但传统方法未考虑时序和图节点,学习效率低。本文将自适应门控机制分别嵌入地理图模块和顺序图模块,提出了自适应门控机制嵌入图神经网络的下一... 下一个POI推荐在基于位置的社交网络中备受关注,旨在通过用户历史签到及时序信息精准推荐。但传统方法未考虑时序和图节点,学习效率低。本文将自适应门控机制分别嵌入地理图模块和顺序图模块,提出了自适应门控机制嵌入图神经网络的下一个POI推荐方法。该网络主要由地理图模块、顺序图模块及语义联合模块3部分构成。其中,自适应地理图模块将自适应门控机制与图卷积神经网络结合,通过门控信号调整节点融合更新比重;自适应顺序图模块通过随机游走网络学习用户的访问偏好,并使用自适应门控机制根据目标任务属性提升相关偏好的比重;设计语义联合模块用于最大化地理图及顺序图模块的一致性分布,并使用软标签交叉熵损失函数优化联合框架的损失。为验证模型有效性,对国外公开数据集(Foursquare_NYC、Foursquare_TKY)及国内数据集(Microblog)进行试验。结果表明,本文提出的模型推荐精度均在85%以上,且相较于最先进的基线模型,精度提升2.97%~86.90%。 展开更多
关键词 自适应门控机制 下一个POI推荐 神经网络
在线阅读 下载PDF
工业互联网中融入域适应的混合神经网络加密恶意流量检测
5
作者 张浩和 韩刚 +1 位作者 杨甜甜 黄睿 《信息安全研究》 北大核心 2025年第5期457-464,共8页
随着信息化技术在工控领域的快速发展,工业互联网逐渐成为网络攻击的重要目标,恶意流量检测显得尤为重要.然而,加密技术的普及使得攻击者可以轻松隐藏恶意通信内容,传统基于内容分析的流量检测方法已难以有效应对.提出一种基于混合神经... 随着信息化技术在工控领域的快速发展,工业互联网逐渐成为网络攻击的重要目标,恶意流量检测显得尤为重要.然而,加密技术的普及使得攻击者可以轻松隐藏恶意通信内容,传统基于内容分析的流量检测方法已难以有效应对.提出一种基于混合神经网络和域适应的加密恶意流量检测方案,融合ResNet网络、ResNext网络、DenseNet网络和相似度检测算法构建混合神经网络.在此基础上,加入域适应模块减少数据的偏差.通过对工业互联网公共数据集进行流预处理,在勿需解密流量的情况下从加密流量中提取深层次特征,使用混合神经网络输出一组充分利用各模型特长的更高维特征向量,随后采用域适应模块中的域分类器提升模型在不同的网络环境和时间段的稳定性和泛化能力.实验结果表明,提出的方案在加密恶意流量检测任务上表现出较好的性能和效率,提高了加密恶意流量检测的准确性. 展开更多
关键词 工业互联网 混合神经网络 加密恶意流量 相似度检测 适应
在线阅读 下载PDF
基于自适应损失均衡梯度增强的物理信息神经网络微地震定位
6
作者 潘登 唐杰 +2 位作者 范忠豪 产嘉怡 彭婧妍 《石油地球物理勘探》 北大核心 2025年第3期618-630,共13页
微地震定位是微地震监测任务中的主要挑战,有助于分析水力压裂的效果。物理信息神经网络(PINN)可实现微地震定位,但PINN中多损失项的权衡对网络的训练起着重要作用。为此,文中提出了一种基于自适应损失均衡梯度增强的物理信息神经网络... 微地震定位是微地震监测任务中的主要挑战,有助于分析水力压裂的效果。物理信息神经网络(PINN)可实现微地震定位,但PINN中多损失项的权衡对网络的训练起着重要作用。为此,文中提出了一种基于自适应损失均衡梯度增强的物理信息神经网络的微地震定位方法。首先结合相对到时与程函方程的残差来形成组合损失函数;其次通过自适应项自动更新损失权重,同时加入梯度信息来增强网络;最后利用网络训练获得整个计算域的旅行时分布,并通过最小旅行时预测出震源位置。测试结果表明,该方法能够提高网络的训练稳定性和预测精度并获得较好的微地震定位效果。 展开更多
关键词 微地震 物理信息神经网络 相对到时 程函方程 自适应损失均衡梯度增强
在线阅读 下载PDF
基于自适应双层无迹卡尔曼滤波神经网络的铝电解电流效率预测模型
7
作者 方小燕 姚立忠 +2 位作者 罗海军 张玉泽 易军 《控制理论与应用》 北大核心 2025年第3期579-589,共11页
针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无... 针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无迹卡尔曼滤波在线更新神经网络的权值和阈值;然后,在双层无迹卡尔曼滤波神经网络的状态变量均方误差中引入约束调节参数;同时,采用梯度下降法自适应调整比例调节参数,将其均方误差约束至较小的范围内,以此来削弱滤波递归计算过程中误差累积对模型的影响;最后,通过铝电解电流效率预测,验证了本文所提方法具有较高的精确度和稳定性. 展开更多
关键词 铝电解 自适应建模 双层无迹卡尔曼滤波 人工神经网络 电流效率
在线阅读 下载PDF
基于集成神经网络的类风湿关节炎中医证候分类器研究
8
作者 杨晶东 江彪 +3 位作者 李熠伟 姜泉 韩曼 宋梦歌 《海军军医大学学报》 CAS CSCD 北大核心 2024年第3期305-319,共15页
目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经... 目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经网络链(FEN)。FEN模型采用一种基于深度神经网络的特征提取基分类器提取临床RA多标签样本的深层特征,增强RA特征区分度;根据协方差理论衡量标签相关性,调节分类器链的输入空间,减少RA错误信息传播和冗余度;并采用集成学习方法减小分类器链中不合理标签序列对RA特征分类的影响。此外,分析了RA中医证候主证和兼证的特征贡献度,挖掘其潜在的风险因素。结果FEN模型的10折交叉验证性能参数汉明损失、1-错误率、准确度和F1值分别为0.0036、0.0248、97.52%、99.18%。与7种典型多标签分类器(分类器链、标签幂集、二进制关联、随机k-标签集、多标签K最近邻、集成分类器链和集成二进制关联)相比,FEN模型具有较好的分类性能。特征贡献度分析提示,主症和次症特征均可作为RA中医证候分类的重要指标,是影响主证和兼证分类的主要因素。结论基于集成神经网络模型的RA中医证候分类器具有较高的分类精度和效率,对于RA的临床诊断和治疗具有重要参考价值。 展开更多
关键词 类风湿关节炎 多标签学习 神经网络 分类器 集成学习
在线阅读 下载PDF
自适应神经网络下舰船航速自动控制研究
9
作者 王珂 于隆 《舰船科学技术》 北大核心 2025年第14期155-158,共4页
针对船桨子系统变系数、非线性特性导致的航速控制难题,本文提出一种基于自适应神经网络的舰船航速自动控制方法,旨在提升航速控制精度。首先,分析螺旋桨推力、阻力与航速的关系;其次,采用自适应循环神经网络,设计一阶严格反馈控制系统... 针对船桨子系统变系数、非线性特性导致的航速控制难题,本文提出一种基于自适应神经网络的舰船航速自动控制方法,旨在提升航速控制精度。首先,分析螺旋桨推力、阻力与航速的关系;其次,采用自适应循环神经网络,设计一阶严格反馈控制系统,依据航速跟踪误差确定控制率,并根据航行环境和船舶状态动态调整控制参数,实现航速精确控制。实验结果表明,该方法能够精准控制舰船航速,使航行轨迹最大化接近期望轨迹,航迹角偏移接近于0,验证了其在航速控制中的高精度和稳定性。 展开更多
关键词 自适应神经网络 舰船航速 自动控制 控制率
在线阅读 下载PDF
固定翼无人机纵向姿态神经网络自适应滑模控制
10
作者 麻玥瑄 陆宇 朱威禹 《航空兵器》 北大核心 2025年第3期72-77,共6页
针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设... 针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设计的自适应律实时调整神经网络权值,实现对模型误差和外部干扰的有效补偿。同时,基于Lyapunov稳定性理论设计了固定翼无人机的纵向姿态滑模控制律,确保闭环系统的全局稳定性和有限时间收敛特性。仿真结果表明,与传统PID控制及滑模控制方法相比,本文方法在存在参数摄动和外部干扰的情况下,能够显著提高固定翼无人机纵向姿态控制系统的跟踪精度和鲁棒性能。 展开更多
关键词 固定翼 无人机 纵向姿态 神经网络 自适应 滑模控制
在线阅读 下载PDF
基于域适应物理信息神经网络的时间序列预测方法
11
作者 曹力丰 阎高伟 +2 位作者 肖舒怡 董珍柱 董平 《自动化学报》 北大核心 2025年第6期1329-1346,共18页
基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于... 基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于线性动力算子的域适应物理信息神经网络方法.首先通过历史工况数据建立线性动力算子神经网络模型,捕获多变量时间序列数据的动态特性.然后通过前向欧拉法对机理模型进行离散化,构造物理信息正则化项,促使模型服从机理约束.最后通过最大均值差异对历史工况和当前工况下隐藏层状态变量进行分布对齐,构建域适应损失,降低变工况下数据分布变化对模型的影响.在多个数据集上的实验表明,该方法可以有效提高模型预测精度和泛化性能. 展开更多
关键词 物理信息机器学习 概念漂移 适应 线性动力算子神经网络
在线阅读 下载PDF
基于自适应神经网络补偿的四旋翼PID控制策略
12
作者 杜飞平 熊振宇 +1 位作者 廖飞 李婷 《兵工自动化》 北大核心 2025年第6期62-68,共7页
针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,... 针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,通过数学推导与仿真分析以消除系统稳态误差,同时提升跟踪精度。在内环姿态控制器设计中,采用自适应RBF神经网络对PID进行补偿性设计,经反复的算法优化与模型验证,构建出高效的控制器模型。基于所设计的四旋翼飞行器模型,结合所提控制策略进行仿真测试。实验结果表明:该方法能对系统所遭受的外部干扰进行高效自适应补偿,有效提升了系统的稳定性,表现出良好的控制能力。 展开更多
关键词 四旋翼飞行器 内外环控制 自适应PID RBF神经网络
在线阅读 下载PDF
基于自适应神经网络的进气压力自抗扰控制
13
作者 白月 白克强 +1 位作者 李燕清 蒋林 《机床与液压》 北大核心 2025年第13期118-125,共8页
为了实现飞行环境进气系统在过渡态试验时压力的精确控制,减小发动机内部强气流干扰和外部随机噪声干扰的影响,提出一种基于自适应径向基函数神经网络的自抗扰控制方法(RBFNN-ADRC)。通过控制电液伺服系统产生的位置信号,实现进气阀门... 为了实现飞行环境进气系统在过渡态试验时压力的精确控制,减小发动机内部强气流干扰和外部随机噪声干扰的影响,提出一种基于自适应径向基函数神经网络的自抗扰控制方法(RBFNN-ADRC)。通过控制电液伺服系统产生的位置信号,实现进气阀门开度的有效控制。利用现代控制理论建立扩张状态观测器,引入自适应RBFNN对扩张状态观测器进行优化,实现对进气压力控制模型的不确定部分和外部环境扰动的自适应估计。同时,通过对总扰动的线性补偿,提升控制性能。构建基于RBFNN-ADRC控制器的进气压力控制系统进行仿真验证,对比RBFNN-ADRC和目前采用的线性自抗扰控制ADRC的试验效果。结果表明:采用RBFNN-ADRC控制时,发动机过渡态试验中控制进气环境压力时超调量和平均稳态误差均有所降低,表明RBFNN-ADRC的抗干扰性、鲁棒性和跟踪精度均优于传统ADRC控制方法。 展开更多
关键词 进气压力 自适应RBF神经网络 自抗扰控制 扩张状态观测器
在线阅读 下载PDF
基于有限时间积分视线制导的四自由度无人水面船自适应神经网络路径跟踪控制
14
作者 李俊辉 祝贵兵 《上海海事大学学报》 北大核心 2025年第2期9-17,共9页
为解决四自由度(4 degree-of-freedom,4-DOF)无人水面船在动态不确定性和外部扰动下的路径跟踪问题,提出一种基于有限时间积分视线(finite-time integral line-of-sight,FT-ILOS)制导的自适应神经网络路径跟踪控制方法。在视线(line-of-... 为解决四自由度(4 degree-of-freedom,4-DOF)无人水面船在动态不确定性和外部扰动下的路径跟踪问题,提出一种基于有限时间积分视线(finite-time integral line-of-sight,FT-ILOS)制导的自适应神经网络路径跟踪控制方法。在视线(line-of-sight,LOS)制导框架下,利用有限时间理论,引入积分机制和新的制导机制,实现船舶位置跟踪误差的有限时间收敛,且避免制导积分项引起的饱和风险。基于反步控制法设计框架,结合FT-ILOS制导方法,利用自适应神经网络逼近复合扰动项,利用虚拟参数学习技术解决“维数灾难”问题,同时利用动态面控制技术降低计算复杂度。为减少执行器响应频率和磨损,在控制律与执行器之间建立周期事件触发协议。通过李雅普诺夫稳定性分析证明闭环控制系统中所有信号均有界,通过MATLAB仿真对比实验验证所提控制方法的有效性和鲁棒性。 展开更多
关键词 无人水面船 路径跟踪 自适应神经网络控制 周期事件触发协议 有限时间积分视线(FT-ILOS)制导方法
在线阅读 下载PDF
基于双注意力图神经网络的链路预测 被引量:1
15
作者 杨真真 林泽龙 杨永鹏 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期106-114,共9页
链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1... 链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1)大多数基于GNN的方法往往容易忽略为链路预测提供额外帮助的边信息的重要性;(2)大多数基于GNN的方法都仅捕获表示图的邻居节点间相似性的低频信息,忽略了表示邻居节点间差异性的高频信息;(3)大多数基于GNN的方法都未考虑输入特征矩阵的节点维度和特征维度两个维度,只关注其中一个维度。针对这些问题,提出了一种基于双注意力图神经网络(Dual Attention Graph Neural Network,DAGNN)的链路预测方法,该方法包含两条路径,以不同的角度更新节点表示。其中一条是基于图神经网络的路径,采用含边信息的频率自适应图注意力网络(Frequency Adaptive Graph Attention Network with Edge Information,FAGAT⁃EI)作为基础模型,有效地利用边信息增强节点之间的关系,并利用频率自适应机制平衡高低频率邻居信息的权重,从而缓解GNN的过度平滑问题;另一条是基于通道注意力网络的路径,提出了一种新的压缩-激励通道注意力模块(Squeeze and Excitation⁃Channel At⁃tention Module,SE⁃CAM)作为基础模型,充分考虑输入特征矩阵的节点维度和特征维度,并自动学习和调整每个节点的不同特征权重,从而得到更有意义的节点表示。最后在两个基准数据集上进行了实验,实验结果表明,提出的链路预测方法在Last⁃FM和Book⁃Crossing两个数据集上的AUC和ACC指标均优于其他基线模型,展现出了卓越的链路预测性能。 展开更多
关键词 链路预测 神经网络 注意力机制 压缩-激励模块 频率自适应
在线阅读 下载PDF
持续记忆的流图神经网络
16
作者 郭虎升 孙玉杰 王文剑 《小型微型计算机系统》 北大核心 2025年第4期818-824,共7页
流图的节点和边以流的形式持续产生,导致整个图结构随着时间推移而不断演化.图神经网络作为图嵌入技术的一种,在捕获流图的动态信息以及快速适应流图持续演化等方面仍然面临着巨大的挑战.为解决这些问题,本文提出了持续记忆的流图神经网... 流图的节点和边以流的形式持续产生,导致整个图结构随着时间推移而不断演化.图神经网络作为图嵌入技术的一种,在捕获流图的动态信息以及快速适应流图持续演化等方面仍然面临着巨大的挑战.为解决这些问题,本文提出了持续记忆的流图神经网络(CMSGNN).该模型能够根据流图持续的演化充分学习历史信息,通过增量学习的方式更新已记忆的历史信息,并且能够自适应地调整模型以适应流图的变化程度,以获得更符合当前信息的流图嵌入.该模型将历史信息与当前信息相结合使得模型能够获得更准确的流图嵌入,从而提高下游任务的准确率.实验结果表明,本文提出的CMSGNN在现实生活中的多个数据集上执行多个任务上均有更好的性能. 展开更多
关键词 流图 神经网络 历史信息 增量更新 当前信息 自适应聚合
在线阅读 下载PDF
基于模糊神经网络在线自学习的多智能体一致性控制
17
作者 张宪霞 唐胜杰 俞寅生 《自动化学报》 北大核心 2025年第3期590-603,共14页
针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,D... 针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,DFNN和神经网络(Neural network,NN)分别逼近控制策略和性能指标.每个智能体的DFNN执行者从零规则开始,通过在线学习,与其局部邻域的智能体交互而生成和合并规则.最终,每个智能体都有一个独特的DFNN控制器,具有不同的结构和参数,实现了最优的分布式同步控制律.仿真结果表明,本文提出的在线算法在非线性多智能体系统分布式一致性控制中优于传统基于NN的ADP算法. 展开更多
关键词 多智能体系统 自适应动态规划 动态模糊神经网络 分布式一致性控制 在线学习
在线阅读 下载PDF
基于域理论的自适应谐振神经网络分类器 被引量:13
18
作者 周志华 陈兆乾 +1 位作者 netra.nju.edu.cn 陈世福 《软件学报》 EI CSCD 北大核心 2000年第5期667-672,共6页
提出了一种基于域理论的自适应谐振神经网络模型 FTART2 ( field theory based adaptive resonancetheory 2 ) .该模型结合了自适应谐振理论和域理论的优点 ,学习速度快 ,归纳能力强 ,效率高 ,可以根据输入样本自适应地调整拓扑结构 ,... 提出了一种基于域理论的自适应谐振神经网络模型 FTART2 ( field theory based adaptive resonancetheory 2 ) .该模型结合了自适应谐振理论和域理论的优点 ,学习速度快 ,归纳能力强 ,效率高 ,可以根据输入样本自适应地调整拓扑结构 ,克服了前馈型网络需要人为设置隐层神经元的缺点 .基准测试表明 ,FTART2在学习精度和速度上都远远优于标准 展开更多
关键词 神经网络 机器学习 自适应谐振 域理论 分类器
在线阅读 下载PDF
遗传算法与修正的自适应矩估计优化循环神经网络的心音分类方法 被引量:1
19
作者 吴全玉 刘美君 +2 位作者 范家琪 潘玲佼 陶为戈 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期202-208,226,共8页
针对传统的循环神经网络(RNN)在识别分类心音信号方面具有梯度爆炸、梯度消失和短期记忆的问题,该文提出了无需心音分段的结合遗传算法(GA)与修正的自适应矩估计(RAdam)优化RNN的心音分类模型。该模型的优势是将GA和RAdam优化器以串联... 针对传统的循环神经网络(RNN)在识别分类心音信号方面具有梯度爆炸、梯度消失和短期记忆的问题,该文提出了无需心音分段的结合遗传算法(GA)与修正的自适应矩估计(RAdam)优化RNN的心音分类模型。该模型的优势是将GA和RAdam优化器以串联的方式融合到RNN中,以达到改进RNN的作用。首先,利用GA的选择、变异和遗传操作,优化RNN的输入层节点数,获取心音特征向量的最优个体的初始解。其次,根据最优个体中的权重、偏置矩阵,赋予模型初始权值和阈值,获得初始权重最优解,整个模型共享参数。最后,联合改进的学习率自适应优化算法,优化RNN模型。结果表明,结合经典的梅尔(Mel)倒频谱系数方法提取心音信号的特征向量,心音信号分类准确率达到90.29%,相比于未优化的RNN模型,准确率提高了17.79%。 展开更多
关键词 遗传算法 自适应矩估计 循环神经网络 心音分类
在线阅读 下载PDF
基于动态自适应图神经网络的电动汽车充电负荷预测 被引量:5
20
作者 张延宇 张智铭 +2 位作者 刘春阳 张西镚 周毅 《电力系统自动化》 EI CSCD 北大核心 2024年第7期86-93,共8页
电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自... 电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自适应相关图结合生成具有时空关联性的综合特征表达式,以捕获充电站负荷的波动性;然后,将提取的特征输入到时空卷积层,捕获时间和空间之间的耦合关系;最后,通过切比雪夫多项式图卷积与多尺度时间卷积提升模型耦合长时间序列之间的能力。以Palo Alto数据集为例,与现有方法相比,所提算法在4种波动情况下的平均预测误差大幅降低。 展开更多
关键词 电动汽车 负荷预测 时空关联特征 自适应神经网络 注意力机制 时空卷积层
在线阅读 下载PDF
上一页 1 2 160 下一页 到第
使用帮助 返回顶部