针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设...针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设计的自适应律实时调整神经网络权值,实现对模型误差和外部干扰的有效补偿。同时,基于Lyapunov稳定性理论设计了固定翼无人机的纵向姿态滑模控制律,确保闭环系统的全局稳定性和有限时间收敛特性。仿真结果表明,与传统PID控制及滑模控制方法相比,本文方法在存在参数摄动和外部干扰的情况下,能够显著提高固定翼无人机纵向姿态控制系统的跟踪精度和鲁棒性能。展开更多
为解决四自由度(4 degree-of-freedom,4-DOF)无人水面船在动态不确定性和外部扰动下的路径跟踪问题,提出一种基于有限时间积分视线(finite-time integral line-of-sight,FT-ILOS)制导的自适应神经网络路径跟踪控制方法。在视线(line-of-...为解决四自由度(4 degree-of-freedom,4-DOF)无人水面船在动态不确定性和外部扰动下的路径跟踪问题,提出一种基于有限时间积分视线(finite-time integral line-of-sight,FT-ILOS)制导的自适应神经网络路径跟踪控制方法。在视线(line-of-sight,LOS)制导框架下,利用有限时间理论,引入积分机制和新的制导机制,实现船舶位置跟踪误差的有限时间收敛,且避免制导积分项引起的饱和风险。基于反步控制法设计框架,结合FT-ILOS制导方法,利用自适应神经网络逼近复合扰动项,利用虚拟参数学习技术解决“维数灾难”问题,同时利用动态面控制技术降低计算复杂度。为减少执行器响应频率和磨损,在控制律与执行器之间建立周期事件触发协议。通过李雅普诺夫稳定性分析证明闭环控制系统中所有信号均有界,通过MATLAB仿真对比实验验证所提控制方法的有效性和鲁棒性。展开更多
文摘针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设计的自适应律实时调整神经网络权值,实现对模型误差和外部干扰的有效补偿。同时,基于Lyapunov稳定性理论设计了固定翼无人机的纵向姿态滑模控制律,确保闭环系统的全局稳定性和有限时间收敛特性。仿真结果表明,与传统PID控制及滑模控制方法相比,本文方法在存在参数摄动和外部干扰的情况下,能够显著提高固定翼无人机纵向姿态控制系统的跟踪精度和鲁棒性能。
文摘为解决四自由度(4 degree-of-freedom,4-DOF)无人水面船在动态不确定性和外部扰动下的路径跟踪问题,提出一种基于有限时间积分视线(finite-time integral line-of-sight,FT-ILOS)制导的自适应神经网络路径跟踪控制方法。在视线(line-of-sight,LOS)制导框架下,利用有限时间理论,引入积分机制和新的制导机制,实现船舶位置跟踪误差的有限时间收敛,且避免制导积分项引起的饱和风险。基于反步控制法设计框架,结合FT-ILOS制导方法,利用自适应神经网络逼近复合扰动项,利用虚拟参数学习技术解决“维数灾难”问题,同时利用动态面控制技术降低计算复杂度。为减少执行器响应频率和磨损,在控制律与执行器之间建立周期事件触发协议。通过李雅普诺夫稳定性分析证明闭环控制系统中所有信号均有界,通过MATLAB仿真对比实验验证所提控制方法的有效性和鲁棒性。