期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
考虑空间异质性的降雨滑坡易发性预测研究
1
作者 张幸福 姜元俊 阿比尔的 《工程科学与技术》 北大核心 2025年第4期12-28,共17页
现有滑坡易发性预测方法未能充分考虑地形、土壤和植被等环境因素的空间异质性,也无法准确反映极端降雨对滑坡易发性的影响。为了克服这些限制,引入了一种结合深度嵌入聚类(DEC)的动态雨量阈值分区方法,通过深度学习技术,根据环境因素... 现有滑坡易发性预测方法未能充分考虑地形、土壤和植被等环境因素的空间异质性,也无法准确反映极端降雨对滑坡易发性的影响。为了克服这些限制,引入了一种结合深度嵌入聚类(DEC)的动态雨量阈值分区方法,通过深度学习技术,根据环境因素将研究区域划分为具有相似特征的子区域,实现了滑坡预测模型的精细化空间异质性分析;在此基础上,提出基于混合分布的动态雨量阈值模型以区分非极端降雨与极端降雨,并采用贝叶斯方法动态更新模型参数,提高了模型对不同降雨类型的适应性和预测的时效性。以通江县为案例,采用多任务学习自适应神经树模型(MLANT),结合深度嵌入DEC模型与混合分布阈值模型,对滑坡易发性进行预测。结果表明,本文方法在精确度、F1分数及受试者工作特征曲线下面积AUC值等关键性能指标上显著优于传统依赖统一阈值的模型。特别是与传统的基于前期有效降雨量方法相比,预测效果提升显著,预测滑坡密度和数量由0.038事件/km^(2)和44个滑坡事件提升至0.044事件/km^(2)和59个滑坡事件,充分证实了在滑坡易发性预测中使用深度嵌入聚类(DEC)的动态雨量阈值分区考虑空间异质性和区分不同降雨事件的重要性和有效性。 展开更多
关键词 滑坡易发性 深度嵌入聚类(DEC) 空间异质性 混合分布降雨阈值 多任务学习自适应神经树模型
在线阅读 下载PDF
基于空间异质性的降雨诱发滑坡易发性研究——以中缅天然气管道贵州段为例
2
作者 李亮亮 白路遥 +1 位作者 施宁 张幸福 《自然灾害学报》 北大核心 2025年第4期62-73,共12页
针对传统滑坡易发性预测方法主要依赖统一的降雨量阈值,忽视不同区域因地形、土壤和植被等环境因素差异导致的降雨响应问题,该文提出了一种提高预测准确性和实时性的解决方案。采用K-Means聚类方法,根据地形、土壤和植被等环境因素,将... 针对传统滑坡易发性预测方法主要依赖统一的降雨量阈值,忽视不同区域因地形、土壤和植被等环境因素差异导致的降雨响应问题,该文提出了一种提高预测准确性和实时性的解决方案。采用K-Means聚类方法,根据地形、土壤和植被等环境因素,将研究区域划分为若干具有相似特征的子区域,为每个子区域拟合基于实时数据的降雨量阈值,提升阈值的局部适应性和针对性。将分区的实时降雨量阈值与自适应神经树模型(adaptive neural tree,ANT)集成,使ANT模型适应各分区的特定环境条件,并根据累计降雨量与滑坡发生率的关系自动调整预测阈值。以中缅油气管道贵州段为例,将整体阈值和基于K-Means聚类得到的分区实时降雨量阈值分别应用于ANT模型。结果显示,采用聚类分区实时降雨量阈值的ANT模型在精确度、召回率、F1分数和受试者工作特征曲线下面积(receiver operating characteristic area under curve,ROC AUC)值等关键性能指标上均优于仅使用整体阈值的模型。研究表明,基于K-Means聚类的实时降雨量阈值分区方法与ANT模型的集成,能够显著提高滑坡易发性预测的准确率,实现滑坡风险的实时评估。 展开更多
关键词 滑坡易发性 K-Means聚类分区 实时降雨量阈值 自适应神经树模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部